HDU 4819 Mosaic 二维线段树
Mosaic
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=95149#problem/G
Description
Can you help the God of sheep?
Input
Each test case begins with an integer n (5 < n <
800). Then the following n rows describe the picture to pixelate, where
each row has n integers representing the original color values. The j-th
integer in the i-th row is the color value of cell (i, j) of the
picture. Color values are nonnegative integers and will not exceed
1,000,000,000 (10^9).
After the description of the picture, there is an integer Q (Q ≤ 100000 (10^5)), indicating the number of mosaics.
Then Q actions follow: the i-th row gives the i-th
replacement made by the God of sheep: xi, yi, Li (1 ≤ xi, yi ≤ n, 1 ≤ Li
< 10000, Li is odd). This means the God of sheep will change the
color value in (xi, yi) (located at row xi and column yi) according to
the Li x Li region as described above. For example, an query (2, 3, 3)
means changing the color value of the cell at the second row and the
third column according to region (1, 2) (1, 3), (1, 4), (2, 2), (2, 3),
(2, 4), (3, 2), (3, 3), (3, 4). Notice that if the region is not
entirely inside the picture, only cells that are both in the region and
the picture are considered.
Note that the God of sheep will do the replacement one by one in the order given in the input.�
Output
For each action, print the new color value of the updated cell.
Sample Input
1 3 1 2 3 4 5 6 7 8 9 5 2 2 1 3 2 3 1 1 3 1 2 3 2 2 3
Sample Output
HINT
题意
给你一个n*n的矩阵,每次操作询问一个区域的(Max+Min)/2是多少
并且把这个区域的值全部改为(Max+Min)/2这个
题解:
二维线段树就好啦
代码:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MinN = ;
struct Nodey
{
int l,r;
int Min,Max;
};
int locy[MinN],locx[MinN] , n , m, q; struct Nodex
{
int l,r;
Nodey sty[MinN*];
void build(int i,int _l,int _r)
{
sty[i].l = _l;
sty[i].r = _r;
sty[i].Min = sty[i].Max = ;
if(_l == _r)
{
locy[_l] = i;
return;
}
int mid = (_l + _r)/;
build(i<<,_l,mid);
build((i<<)|,mid+,_r);
}
int queryMin(int i,int _l,int _r)
{
if(sty[i].l == _l && sty[i].r == _r)
return sty[i].Min;
int mid = (sty[i].l + sty[i].r)/;
if(_r <= mid)return queryMin(i<<,_l,_r);
else if(_l > mid)return queryMin((i<<)|,_l,_r);
else return min(queryMin(i<<,_l,mid) , queryMin((i<<)|,mid+,_r));
}
int queryMax(int i,int _l,int _r)
{
if(sty[i].l == _l && sty[i].r == _r)
return sty[i].Max;
int mid = (sty[i].l + sty[i].r)/;
if(_r <= mid)return queryMax(i<<,_l,_r);
else if(_l > mid)return queryMax((i<<)|,_l,_r);
else return max(queryMax(i<<,_l,mid) , queryMax((i<<)|,mid+,_r));
}
}stx[MinN*]; void build(int i,int l,int r)
{
stx[i].l = l;
stx[i].r = r;
stx[i].build(,,);
if(l == r)
{
locx[l] = i;
return;
}
int mid = (l+r)/;
build(i<<,l,mid);
build((i<<)|,mid+,r);
}
//修改值
void Modify(int x,int y,int val)
{
int tx = locx[x];
int ty = locy[y];
stx[tx].sty[ty].Min = stx[tx].sty[ty].Max = val;
for(int i = tx;i;i >>= )
for(int j = ty;j;j >>= )
{
if(i == tx && j == ty)continue;
if(j == ty)
{
stx[i].sty[j].Min = min(stx[i<<].sty[j].Min , stx[(i<<)|].sty[j].Min);
stx[i].sty[j].Max = max(stx[i<<].sty[j].Max , stx[(i<<)|].sty[j].Max);
}
else
{
stx[i].sty[j].Min = min(stx[i].sty[j<<].Min , stx[i].sty[(j<<)|].Min);
stx[i].sty[j].Max = max(stx[i].sty[j<<].Max , stx[i].sty[(j<<)|].Max);
}
}
}
int queryMax(int i,int x1,int x2,int y1,int y2)
{
if(stx[i].l == x1 && stx[i].r == x2)
return stx[i].queryMax(,y1,y2);
int mid = (stx[i].l + stx[i].r)/;
// cout << stx[i].l << " " << stx[i].r << " " << mid << endl;
if(x2 <= mid)return queryMax(i<<,x1,x2,y1,y2);
else if(x1 > mid)return queryMax((i<<)|,x1,x2,y1,y2);
else return max(queryMax(i<<,x1,mid,y1,y2) , queryMax((i<<)|,mid+,x2,y1,y2));
}
int queryMin(int i,int x1,int x2,int y1,int y2)
{
if(stx[i].l == x1 && stx[i].r == x2)
return stx[i].queryMin(,y1,y2);
int mid = (stx[i].l + stx[i].r)/;
// cout << stx[i].l << " " << stx[i].r << " " << mid << endl;
if(x2 <= mid)return queryMin(i<<,x1,x2,y1,y2);
else if(x1 > mid)return queryMin((i<<)|,x1,x2,y1,y2);
else return min(queryMin(i<<,x1,mid,y1,y2) , queryMin((i<<)|,mid+,x2,y1,y2));
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
scanf("%d",&T);int m;
for(int cas = ;cas <= T;cas++)
{
printf("Case #%d:\n",cas);
int q;
scanf("%d",&n); build(,,);
for(int i = ;i <= n;i++)
for(int j = ;j <= n;j++)
{
int a;
scanf("%d",&a);
Modify(i,j,a);
}
int x,y,L;
scanf("%d",&q);
while(q--)
{
scanf("%d%d%d",&x,&y,&L);
int x1 = max(x-L/,);
int y1 = max(y-L/,);
int x2 = min(x+L/,n);
int y2 = min(y+L/,n);
int t = queryMax(,x1,x2,y1,y2) + queryMin(,x1,x2,y1,y2);
//cout<<queryMax(1,x,x2,y,y2) <<" "<< queryMin(1,x,x2,y,y2) << endl;
t = t/;
printf("%d\n",t);
Modify(x,y,t);
}
}
return ;
}
HDU 4819 Mosaic 二维线段树的更多相关文章
- HDU 4819 Mosaic --二维线段树(树套树)
题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...
- UVALive 6709 - Mosaic 二维线段树
题目链接 给一个n*n的方格, 每个方格有值. 每次询问, 给出三个数x, y, l, 求出以x, y为中心的边长为l的正方形内的最大值与最小值, 输出(maxx+minn)/2, 并将x, y这个格 ...
- HDU 4819 Mosaic(13年长春现场 二维线段树)
HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...
- HDU 4819 Mosaic (二维线段树)
Mosaic Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)Total S ...
- HDU 4819 Mosaic (二维线段树&区间最值)题解
思路: 二维线段树模板题,马克一下,以后当模板用 代码: #include<cstdio> #include<cmath> #include<cstring> #i ...
- HDU 4819 Mosaic 【二维线段树】
题目大意:给你一个n*n的矩阵,每次找到一个点(x,y)周围l*l的子矩阵中的最大值a和最小值b,将(x,y)更新为(a+b)/2 思路:裸的二维线段树 #include<iostream> ...
- hdu 4819 二维线段树模板
/* HDU 4819 Mosaic 题意:查询某个矩形内的最大最小值, 修改矩形内某点的值为该矩形(Mi+MA)/2; 二维线段树模板: 区间最值,单点更新. */ #include<bits ...
- HDU 4819 二维线段树
13年长春现场赛的G题,赤裸裸的二维线段树,单点更新,区间查询 不过我是第一次写二维的,一开始写T了,原因是我没有好好利用行段,说白一点,还是相当于枚举行,然后对列进行线段树,那要你写二维线段树干嘛 ...
- HDU 1823 Luck and Love(二维线段树)
之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...
随机推荐
- HDU 5835 Danganronpa
Danganronpa Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- Android aidl 打入jar解决方法
工程上右键 选择export 然后取消选择这个工程里的所有的文件 点开到gen文件夹下选择aidl生成的 java文件 选择生成的java文件和src目录导出jar包即可
- PIG的配置
Pig是一个客户端应用程序,就算你要在Hadoop集群上运行Pig,也不需要在集群上装额外的东西.Pig的配置非常简单: 1.下载pig,网址http://pig.apache.org/ 2.在机器上 ...
- linux常用命令之--文件打包与压缩命令
linux的文件打包与压缩命令 1.压缩与解压命令 compress:用于压缩指定的文件,后缀为.z 其命令格式如下: compress [-d] 文件名 常用参数: -d:解压被压缩的文件(.z为后 ...
- linux常用命令之--目录与文件的操作命令
1.linux的目录与文件的增.删.改.复制 pwd:用于显示当前所在的目录 ls:用于显示指定目录下的内容 其命令格式如下: ls [-option] [file] 常用参数: -l:显示文件和目录 ...
- Ubuntu 14.04配置FTP服务器
搭建: 1.sudo apt-get update #更新软件 2.sudo apt-get install vsftpd ...
- sqlserver 中 lastindexof 功能
create table tb(imgPath varchar(50)) insert into tb select 'd1/d2/f1'--d1/d2/dd/f1 select left(i ...
- 如何在 Windows Azure 的虚拟机 ubuntu 上面安装和配置 openVPN(一)
这篇文章,既是写给大伙儿的,也是写给自己的.本文要求读者需要有一定的英文基础和动手能力. 因为有MSDN subscriptions,所以每个月有100$可以使用windows azure,于是想尝试 ...
- mysql 错误解决
1. Error Code: 1175. You are using safe update mode and you tried to update a table without a WHERE ...
- JAVA NIO 类库的异步通信框架netty和mina
Netty 和 Mina 我究竟该选择哪个? 根据我的经验,无论选择哪个,都是个正确的选择.两者各有千秋,Netty 在内存管理方面更胜一筹,综合性能也更优.但是,API 变更的管理和兼容性做的不是太 ...