有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。

你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。

对于任意一个开关,最多只能进行一次开关操作。

你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

输入格式

输入第一行有一个数K,表示以下有K组测试数据。

每组测试数据的格式如下:

第一行 一个数N(0 < N < 29)。

第二行 N个0或者1的数,表示开始时N个开关状态。

第三行 N个0或者1的数,表示操作结束后N个开关的状态。

接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。

每组数据以 0 0 结束。

输出格式

如果有可行方法,输出总数,否则输出“Oh,it’s impossible~!!” 。

输入样例:

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

输出样例:

4
Oh,it's impossible~!!
题意:有n盏灯,现在给了这n盏灯的初始状态,还有要最终状态,最终状态要通过你进行了x次操作后得到
每个灯最多进行一次操作,其中灯与灯之间有关系,如果开这个灯另一个灯也会改变状态,现在求有多少种操作可以满足达到最终状态 思路:我们可以化成n个式子
aij 代表按j开关会影响i开关,xi代表按i开关 ,begin 代表初始状态,end代表最终状态
a11*x1^a12*x2^a13*x3....=begin^end // 这是计算1开关进行了多少次操作,两边执行次数要相等
......
......
......
...... 这里我们可以用状态压缩代表一行的状态,0位代表常数是多少,1-n位代表系数式为多少,XOR其实也相当于+法,后面矩阵消元的时候也用XOR
本题求的是方案数,我们初值为1,但是一旦有自由元,原先有自由元就代表当前有无数个解,这里只有0,1两种情况
所以答案为 1<<cnt
#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll a[];
int main(){
ll t;
cin>>t;
while(t--){
ll n;
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
for(int i=;i<=n;i++){
ll z;
cin>>z;
a[i]^=z;
a[i]|=(<<i);
}
ll x,y;
while(cin>>x>>y){
if(x==&&y==) break;
a[y]|=(<<x);
}
ll ans=;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(a[i]<a[j]) swap(a[i],a[j]);//这里求出当前最大元系数
}
if(a[i]==){//等于0,代表系数+常数都等于0,代表当前行全为0,那么直接推出,后面几位全为自由元,因为上面求的是最大值
// cout<<"i:"<<i<<endl;
ans=<<(n-i+);
break;
}
if(a[i]==){//为1代表 常数=1 ,因为是状压形态存储,所以肯定是第0位为1,这里就造成无解情况 0=1
ans=;
break;
}
for(int k=n;k>=;k--){ //这里我们从高到低位枚举到最高的位的元让然后遍历 ,为什么我们不直接用第i位呢,因为我们需要从高到低枚举,前面找的最大值
if(a[i]>>k&){
for(int j=;j<=n;j++){
if(i!=j&&(a[j]>>k&)){
a[j]^=a[i];
}
}
break;
}
}
}
if(ans==){
cout<<"Oh,it's impossible~!!"<<endl;
}
else{
cout<<ans<<endl;
}
}
}

 

AcWing 208. 开关问题 (高斯消元+状压)打卡的更多相关文章

  1. POJ 1753 Flip Game(高斯消元+状压枚举)

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45691   Accepted: 19590 Descr ...

  2. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  3. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  4. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  5. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  7. AcWing 209. 装备购买 (高斯消元线性空间)打卡

    脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要 ...

  8. poj1830 开关问题[高斯消元]

    其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...

  9. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

随机推荐

  1. 【Java】字符串转json

    import org.json.JSONObject; JSONObject jo = new JSONObject(new String(需要转换的字符串));

  2. paper 161:python的Json数据解析

    概念 序列化(Serialization):将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON.XML等.反序列化就是从存储区域(JSON,XML)读取反序列化对象的状态 ...

  3. [CSP-S模拟测试]:beauty(搜索)

    题目描述 距离产生美.一棵包含$n$个点的树,有$2k$个不同的关键点,我们现在需要将这些点两两配对,对于一种形如:$$(u_1,v_1),(u_2,v_2),...,(u_k,v_k)$$的配对方案 ...

  4. Windows-菜单太长点不到

    显示设置里显示器方向调整成纵向

  5. 102.kaldi 斯坦福语音识别工具的编译

    接着上一节,在编译完了openFST有限状态机之后,便开始了最重要部分,语音识别插件的编译过程 首先看目录是如下所示的 1.首先添加openBLAS的支持,这是一个矩阵运算库,个人觉得这个矩阵运算库 ...

  6. delphi在64位系统下写注册表注意事项

    HKEY_LOCAL_MACHINE写这个主键下的项,在64位系统下可能会重定向,所以构造时要加KEY_WOW64_64KEY reg := TRegistry.Create(KEY_WRITE or ...

  7. zabbix4.0部署

    1.环境检查 uname -r getenforce systemctl status firewalld.service 2.设置解析,自建yum源(可选) /etc/hosts #!/bin/ba ...

  8. play framework 在idea简单运行配置(mac为例)

    文章目录 play 最基本的构建 在idea中配置 配置jdk相关 配置play 运行 运行 play 最基本的构建 https://blog.csdn.net/dataiyangu/article/ ...

  9. NTFS文件系统的UsnJrnl对于FileReference的处理

    1. 背景 http://stackoverflow.com/q/20418694/941650 这里面临的一个核心问题是,如果MFT Reference相等,能够表明这些记录代表的是同一个文件吗? ...

  10. How many groups(DP)

    题意: 定义:设M为数组a的子集(元素可以重复),将M中的元素排序,若排序后的相邻两元素相差不超过2,则M为a中的一个块,块的大小为块中的元素个数 给出长度为n的数组a,1<=n<=200 ...