有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。

你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。

对于任意一个开关,最多只能进行一次开关操作。

你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

输入格式

输入第一行有一个数K,表示以下有K组测试数据。

每组测试数据的格式如下:

第一行 一个数N(0 < N < 29)。

第二行 N个0或者1的数,表示开始时N个开关状态。

第三行 N个0或者1的数,表示操作结束后N个开关的状态。

接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。

每组数据以 0 0 结束。

输出格式

如果有可行方法,输出总数,否则输出“Oh,it’s impossible~!!” 。

输入样例:

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

输出样例:

4
Oh,it's impossible~!!
题意:有n盏灯,现在给了这n盏灯的初始状态,还有要最终状态,最终状态要通过你进行了x次操作后得到
每个灯最多进行一次操作,其中灯与灯之间有关系,如果开这个灯另一个灯也会改变状态,现在求有多少种操作可以满足达到最终状态 思路:我们可以化成n个式子
aij 代表按j开关会影响i开关,xi代表按i开关 ,begin 代表初始状态,end代表最终状态
a11*x1^a12*x2^a13*x3....=begin^end // 这是计算1开关进行了多少次操作,两边执行次数要相等
......
......
......
...... 这里我们可以用状态压缩代表一行的状态,0位代表常数是多少,1-n位代表系数式为多少,XOR其实也相当于+法,后面矩阵消元的时候也用XOR
本题求的是方案数,我们初值为1,但是一旦有自由元,原先有自由元就代表当前有无数个解,这里只有0,1两种情况
所以答案为 1<<cnt
#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll a[];
int main(){
ll t;
cin>>t;
while(t--){
ll n;
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
for(int i=;i<=n;i++){
ll z;
cin>>z;
a[i]^=z;
a[i]|=(<<i);
}
ll x,y;
while(cin>>x>>y){
if(x==&&y==) break;
a[y]|=(<<x);
}
ll ans=;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(a[i]<a[j]) swap(a[i],a[j]);//这里求出当前最大元系数
}
if(a[i]==){//等于0,代表系数+常数都等于0,代表当前行全为0,那么直接推出,后面几位全为自由元,因为上面求的是最大值
// cout<<"i:"<<i<<endl;
ans=<<(n-i+);
break;
}
if(a[i]==){//为1代表 常数=1 ,因为是状压形态存储,所以肯定是第0位为1,这里就造成无解情况 0=1
ans=;
break;
}
for(int k=n;k>=;k--){ //这里我们从高到低位枚举到最高的位的元让然后遍历 ,为什么我们不直接用第i位呢,因为我们需要从高到低枚举,前面找的最大值
if(a[i]>>k&){
for(int j=;j<=n;j++){
if(i!=j&&(a[j]>>k&)){
a[j]^=a[i];
}
}
break;
}
}
}
if(ans==){
cout<<"Oh,it's impossible~!!"<<endl;
}
else{
cout<<ans<<endl;
}
}
}

 

AcWing 208. 开关问题 (高斯消元+状压)打卡的更多相关文章

  1. POJ 1753 Flip Game(高斯消元+状压枚举)

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45691   Accepted: 19590 Descr ...

  2. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  3. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  4. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  5. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  7. AcWing 209. 装备购买 (高斯消元线性空间)打卡

    脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要 ...

  8. poj1830 开关问题[高斯消元]

    其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...

  9. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

随机推荐

  1. 【Linux】清理缓存buffer/cache

    运行sync将dirty的内容写回硬盘 sync 通过修改proc系统的drop_caches清理free的cache echo 3 > /proc/sys/vm/drop_caches ech ...

  2. python练习题之全选框全不选反选

    功能 实现分为两大部分: 第一body 部分,1,通过<li>无序列表标签实现选项的基本样式,通过input的checkbox标签实现里面的复选框功能.用到了标签的嵌套.然后选项的js方法 ...

  3. php面试专题---5、流程控制考点

    php面试专题---5.流程控制考点 一.总结 一句话总结: 看代码不要先看函数里面的内容,要用的时候再去看:注意静态,注意变量作用域,php中的内置函数需要去归类总结,就是太容易忘记了 1.写出如下 ...

  4. Qt/Qte/Qtopia三者的区别

    Qt泛指 Qt software的所有版本的图像界面库,包括 Qt/X11(Unix/Linux),Qt Windows, Qt Mac 等,但这只是相对于二进制来说的.Qt作为一个跨平台的GUI 框 ...

  5. vue项目在IE下显示空白打不开问题

    近期遇到了项目是vue做的,在IE浏览器下打不开,显示空白问题,解决方案如下: 打不开的原因是因为少了babel-polyfill处理器,所以第一步需要下载: npm install babel-po ...

  6. Php安装时出现的问题处理

    问题从这里开始,我们一步一步说明: cd /usr/local/src/ tar zxvf php-5.5.6.tar.gz cd php-5.5.6 ./configure \ //执行当前目录下软 ...

  7. python 装饰器 对类和函数的装饰

    #装饰器:对类或者函数进行功能的扩展  很多需要缩进的没有进行缩进'''#第一步:基本函数def laxi(): print('拉屎')#调用函数laxi()laxi() print('======= ...

  8. event代表事件的状态,专门负责对事件的处理,它的属性和方法能帮助我们完成很多和用户交互的操作;

    IE的event和其他的标准DOM的Event是不一样的,不同的浏览器事件的冒泡机制也是有区别 IE:window.event.cancelBubble = true;//停止冒泡window.eve ...

  9. C#序列化json属性名首字母变成小写的解决方案

    原文:C#序列化json属性名首字母变成小写的解决方案 //接口返回自动转小写,容易造成前后端不一致,获取不到数据,切换成转驼峰(首字母大写)如Code/Result //在ConfigureServ ...

  10. automapper实体中的映射和聚合根中的使用

    一,如下例子: using AutoMapper; using System; using System.Collections.Generic; using System.Linq; using S ...