题目链接

先打一个sg函数的表,找找规律,发现sg函数可以递归求解

打表代码如下

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;

;

bool vis[N];
int sg[N];
int k;

void init()
{
    memset(sg,,sizeof(sg));
    memset(vis,false,sizeof(vis));
    sg[]=,sg[]=;
    ;i<=;i++)
    {
        memset(vis,,sizeof(vis));
        )/k;j<i;j++)
            vis[sg[j]]=true;
        ;j<=;j++)
            if(vis[j]==false)
            {
                sg[i]=j;
                break;
            }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    while(cin>>k)
    {
        init();
        ;i<=;i++)
        {
            printf(? '\n':' ');
        }
        puts("");
        puts("");
    }
}

得到的一个结果

k=
sg[  ]=   sg[  ]=   sg[  ]=   sg[  ]=
sg[  ]=   sg[  ]=   sg[  ]=   sg[  ]=
sg[  ]=   sg[ ]=   sg[ ]=   sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]= 

当然k可以改来改去地试

再之后,如果异或和不为0,要特殊处理下,也是根据打表的规律,具体方法见代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;

;
LL k;
int n;
LL a[N];

LL sg(LL x)
{
    ||x==) ;
    )
        )/k;
    return sg(x/k);
}

int main()
{
    while(~scanf("%d%lld",&n,&k))
    {
        LL ans=;
        ;i<=n;i++)
        {
            scanf("%lld",&a[i]);
            ans^=sg(a[i]);
        }
//        cout<<ans<<endl;
        if(ans)
        {
            int pos;
            LL y;
            ;i<=n;i++)
            {
                LL sgx=sg(a[i]),t=sgx^ans;
                pos=i;
                y=t+(t+k-)/(k-);
//                cout<<y<<' '<<(a[i]+k-1)/k<<endl;
                )
                {
                    if(y>=a[i]) break;
                    )/k)
                    {
                        printf("Alice %d %lld\n",pos,y);
                        ;
                    }
                    y=y*k+;
                }
            }
            printf("Alice %d %lld\n",pos,y);
        }
        else
            puts("Bob");
    }
}

51nod 1661: 黑板上的游戏(sg函数 找规律)的更多相关文章

  1. 51nod-1661 1661 黑板上的游戏(组合游戏)

    题目链接: 1661 黑板上的游戏 Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, ..., an,游戏的规则是这样的:1. Alice占有先手主动权.2. 每个人可以选取一 ...

  2. BZOJ 1228 E&G(sg函数+找规律)

    把一对石子堆看出一个子游戏.打出子游戏的sg表找规律.. 这个规律我是一定找不出来的... 对于i,j,如果 (i-1)%pow(2,k+1) < pow(2,k) (j-1)%pow(2,k+ ...

  3. 51nod_1661: 黑板上的游戏(sg函数 找规律)

    题目链接 先打一个sg函数的表,找找规律,发现sg函数可以递归求解 打表代码如下 #include<bits/stdc++.h> using namespace std; typedef ...

  4. HDU-4664 Triangulation 博弈,SG函数找规律

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4664 题意:一个平面上有n个点(一个凸多边形的顶点),每次可以连接一个平面上的两个点(不能和已经连接的 ...

  5. HDU 1517 A Multiplication Game (SG函数找规律)

    题意:两个玩家玩一个游戏,从 p = 1,开始,然后依次轮流选择一个2 - 9的数乘以 p,问你谁先凑够 p >= n. 析:找规律,我先打了一下SG函数的表,然后就找到规律了 我找到的是: 1 ...

  6. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  7. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  8. HDU 1536 S-Nim (组合游戏+SG函数)

    题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...

  9. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

随机推荐

  1. unity项目警告之 LF CRLF问题

    unity中创建的脚本,以LF结尾. Visual studio中创建的脚本,以 CRLF结尾. 当我们创建一个unity脚本后,再用VS打开编辑保存后,这个文件既有LF结尾符,也有CRLF结尾符. ...

  2. Python中import的使用方法

    源文出处: "import"的本质参照: Python中import机制 python导入自定义模块和包

  3. delphi 手势 识别 哈哈

    本例尝试在 OnGesture 事件中响应 sgLeft.sgRight 手势; 操作步骤: 1.加 TGestureManager 控件如窗体: GestureManager1; 2.设置窗体属性 ...

  4. Drone - 安装,搭配 GitLab 下的配置和使用

    参考资料: Drone 官网地址:https://drone.io Drone 的 GitHub 地址:https://github.com/drone/drone 简介:https://imnerd ...

  5. Vue访问子组件实例或子元素

    1 尽管存在 prop 和事件,有的时候你仍可能需要在 JavaScript 里直接访问一个子组件(例如,调用子组件的方法).为了达到这个目的,你可以通过 ref 特性为这个子组件赋予一个 ID 引用 ...

  6. postman的下载和使用

    postman的下载 官网:https://www.getpostman.com/downloads/ 创建账号或者用谷歌浏览器账号登录 登录之后,进行接口测试,这里请求百度为例,然后点击send,就 ...

  7. python函数与方法的区别

    一.函数和方法的区别 1.函数要手动传self,方法不用传 2.如果是一个函数,用类名去调用,如果是一个额方法,用对象去调用 举例说明: class Foo(object): def __init__ ...

  8. JavaScript.Remove

    Array.prototype.remove = function (from, to) {     var rest = this.slice((to || from) + 1 || this.le ...

  9. BFS+打印路径

    题目是给你起点sx,和终点gx:牛在起点可以进行下面两个操作: 步行:John花一分钟由任意点X移动到点X-1或点X+1. 瞬移:John花一分钟由任意点X移动到点2*X. 你要输出最短步数及打印路径 ...

  10. NGUI的窗体的推动和调节大小(drag object和drag resize object)

    一,我们先添加一个sprite,给sprite添加一个背景图片,然后attach添加一个box Collider,但是这时我们右键attach是找不到drag object的我们需要在add comp ...