题目链接

先打一个sg函数的表,找找规律,发现sg函数可以递归求解

打表代码如下

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;

;

bool vis[N];
int sg[N];
int k;

void init()
{
    memset(sg,,sizeof(sg));
    memset(vis,false,sizeof(vis));
    sg[]=,sg[]=;
    ;i<=;i++)
    {
        memset(vis,,sizeof(vis));
        )/k;j<i;j++)
            vis[sg[j]]=true;
        ;j<=;j++)
            if(vis[j]==false)
            {
                sg[i]=j;
                break;
            }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    while(cin>>k)
    {
        init();
        ;i<=;i++)
        {
            printf(? '\n':' ');
        }
        puts("");
        puts("");
    }
}

得到的一个结果

k=
sg[  ]=   sg[  ]=   sg[  ]=   sg[  ]=
sg[  ]=   sg[  ]=   sg[  ]=   sg[  ]=
sg[  ]=   sg[ ]=   sg[ ]=   sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=   sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]=
sg[ ]=  sg[ ]=  sg[ ]=  sg[ ]= 

当然k可以改来改去地试

再之后,如果异或和不为0,要特殊处理下,也是根据打表的规律,具体方法见代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;

;
LL k;
int n;
LL a[N];

LL sg(LL x)
{
    ||x==) ;
    )
        )/k;
    return sg(x/k);
}

int main()
{
    while(~scanf("%d%lld",&n,&k))
    {
        LL ans=;
        ;i<=n;i++)
        {
            scanf("%lld",&a[i]);
            ans^=sg(a[i]);
        }
//        cout<<ans<<endl;
        if(ans)
        {
            int pos;
            LL y;
            ;i<=n;i++)
            {
                LL sgx=sg(a[i]),t=sgx^ans;
                pos=i;
                y=t+(t+k-)/(k-);
//                cout<<y<<' '<<(a[i]+k-1)/k<<endl;
                )
                {
                    if(y>=a[i]) break;
                    )/k)
                    {
                        printf("Alice %d %lld\n",pos,y);
                        ;
                    }
                    y=y*k+;
                }
            }
            printf("Alice %d %lld\n",pos,y);
        }
        else
            puts("Bob");
    }
}

51nod 1661: 黑板上的游戏(sg函数 找规律)的更多相关文章

  1. 51nod-1661 1661 黑板上的游戏(组合游戏)

    题目链接: 1661 黑板上的游戏 Alice和Bob在黑板上玩一个游戏,黑板上写了n个正整数a1, a2, ..., an,游戏的规则是这样的:1. Alice占有先手主动权.2. 每个人可以选取一 ...

  2. BZOJ 1228 E&G(sg函数+找规律)

    把一对石子堆看出一个子游戏.打出子游戏的sg表找规律.. 这个规律我是一定找不出来的... 对于i,j,如果 (i-1)%pow(2,k+1) < pow(2,k) (j-1)%pow(2,k+ ...

  3. 51nod_1661: 黑板上的游戏(sg函数 找规律)

    题目链接 先打一个sg函数的表,找找规律,发现sg函数可以递归求解 打表代码如下 #include<bits/stdc++.h> using namespace std; typedef ...

  4. HDU-4664 Triangulation 博弈,SG函数找规律

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4664 题意:一个平面上有n个点(一个凸多边形的顶点),每次可以连接一个平面上的两个点(不能和已经连接的 ...

  5. HDU 1517 A Multiplication Game (SG函数找规律)

    题意:两个玩家玩一个游戏,从 p = 1,开始,然后依次轮流选择一个2 - 9的数乘以 p,问你谁先凑够 p >= n. 析:找规律,我先打了一下SG函数的表,然后就找到规律了 我找到的是: 1 ...

  6. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  7. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  8. HDU 1536 S-Nim (组合游戏+SG函数)

    题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...

  9. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

随机推荐

  1. 1206C Almost Equal

    题目大意 给你一个n 让你用1~2*n的数填满一个2*n个点的环 使得任意连续的n个位置的和的最大值减最小值不大于1 分析 我们通过瞎jb找规律发现n为偶数吴姐 而n为奇数我们设前n个位置为0组,后n ...

  2. CentOS 7安装图形界面

    之前公司的服务器都是用的CentOS 的系统,需要安装图形界面的时候我会执行以下命令 yum -y groupinstall "X Window System" "Fon ...

  3. Vagrant 入门 - 同步目录(synced folders)

    原文地址 尽管可以非常轻松的启动一台虚拟机,但很少有人希望通过 SSH 使用基于终端的编辑器来编辑文件.幸运的是,借助 Vagrant 你不需要这样做.通过使用同步目录,Vagrant 会自动同步 g ...

  4. 2019Hdu多校第三场:1007 Find the answer(multiset 解法)

    原题链接: Find the answer c++中,multiset是库中一个非常有用的类型,它可以看成一个序列,插入一个数,删除一个数都能够在O(logn)的时间内完成,而且他能时刻保证序列中的数 ...

  5. C++64位整型

    今天在Ubuntu下编译C++代码,然后毫无防备的出现以下错误: 查阅了相关资料,__int64是VC++独有的,因此64位g++无法识别. 以下内容转载自:Byvoid 在C/C++中,64位整型一 ...

  6. Java IO(3)

    字符流相关 字符流基本上可以类比字节流 只不过是将字节流的byte 换为char. 最根本的两个类是Reader以及Writer Reader的子类有:BufferedReader, CharArra ...

  7. Java中的类修饰符

    资料主要来源于网络(http://60.28.60.3/zy/java-new/zhishidian/chap3/3.htm) 之前每次写小测试程序的时候,总是把一个类放在一个Java文件中,按理说这 ...

  8. C#递归加载目录树

    /// 获取目录管理信息集合 /// </summary> /// <returns></returns> public List<CatalogTree&g ...

  9. MySQL数据类型-整型

    ​ MySQL支持SQL标准整数类型integer(或INT)和SMALLINT.作为标准的扩展,MySQL还支持整数类型TINYINT.MEDIUMINT和BIGINT. 类型 所占字节 有符号最小 ...

  10. Cookie/Session/Local Storage/IndexedDB

    本文主要总结客户端/浏览器端数据存储的技术. 在客户端或者浏览器端存储,可以快速的访问页面,当前主要有Cookie,Session,Local Storage,IndexedDB四种(WebSQL呗废 ...