convex hull
1 什么是convex hull
就是凸包,是计算几何中的一个概念,计算几何是计算机图形学的基础之一。
对于二维平面来说是这样的:对于二维平面上的点集,凸包是位于最外层的点构成的包围其它所有的点的凸多边形。
2 Graham's scan算法
第一,找initial点
y最小的点,如果有多个,选择x也最小的点。
第二,对所有其它的点进行排序
计算initial点到所有其它点的连线和x轴的夹角,从小到大排列。
第三,找right turn
所谓的right turn就是从上个点到本点向对于上上个点到上个点是不是向右转了。如果是的话,就要删除掉上个点,而直接连上上个点,直到是left turn为止,进栈。
第四,找right turn的起始点
从第三个点就可以开始找了,先将前两个点入栈。
遍历完之后,栈里面所剩的点构成的多边形就是凸包。
3 算法的时间复杂度
O(nlgn)
4 算法的正确性
因为算法遍历了所有的点,并且保证了所有的点都在外接多边形构成的边的左边,所以就保证了所有的点都在该外接多边形的内部。 另外,所有的边都是向左走的,因此这个多边形是一个凸多边形,所以算法是正确的。
convex hull的更多相关文章
- 凸包(Convex Hull)构造算法——Graham扫描法
凸包(Convex Hull) 在图形学中,凸包是一个非常重要的概念.简明的说,在平面中给出N个点,找出一个由其中某些点作为顶点组成的凸多边形,恰好能围住所有的N个点. 这十分像是在一块木板上钉了N个 ...
- Convex Hull 实现理论+自制Python代码
Convex Hull 概述 计算n维欧式空间散点集的凸包,有很多的方法.但是如果要实现快速运算则其难点在于:如何快速判断散点集的成员是否是在凸集的内部.如果可以简化判断的运算过程,则可以极大简化迭代 ...
- OpenCV入门之寻找图像的凸包(convex hull)
介绍 凸包(Convex Hull)是一个计算几何(图形学)中的概念,它的严格的数学定义为:在一个向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包. 在图像处理过程中,我们 ...
- 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual
1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...
- Monotone Chain Convex Hull(单调链凸包)
Monotone Chain Convex Hull(单调链凸包)算法伪代码: //输入:一个在平面上的点集P //点集 P 按 先x后y 的递增排序 //m 表示共a[i=0...m]个点,ans为 ...
- opencv::凸包-Convex Hull
概念介绍 什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部. 正式定义:包含点集合S中所有点的最小凸多边形称为凸包 Graham扫描算法 首先选 ...
- Convex Hull | Set 1
Given a set of points in the plane. the convex hull of the set is the smallest convex polygon that c ...
- 2018牛客网暑假ACM多校训练赛(第三场)I Expected Size of Random Convex Hull 计算几何,凸包,其他
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round3-I.html 题目传送门 - 2018牛客多校赛第三场 I ...
- Gym 101986D Making Perimeter of the Convex Hull Shortest(凸包+极角排序)
首先肯定是构造一个完整的凸包包括所有的点,那么要使得刚好有两个点在外面,满足这个条件的只有三种情况. 1.两个在凸包上但是不连续的两个点. 2.两个在凸包上但是连续的两个点. 3.一个在凸包上,还有一 ...
随机推荐
- 在 VS2015+EF6.0中使用Mysql 遇到的坑
1)首先是要在vs2015中安装mysql Database 默认是不存在的 1)下载mysql-connector-net-6.9.9.msi 地址:https://dev.mysql.com ...
- css float属性详解
定义和用法 float 属性定义元素在哪个方向浮动.以往这个属性总应用于图像,使文本围绕在图像周围,不过在 CSS 中,任何元素都可以浮动.浮动元素会生成一个块级框,而不论它本身是何种元素.如果浮动非 ...
- HDU - 2102 A计划(双层BFS)
题目: 可怜的公主在一次次被魔王掳走一次次被骑士们救回来之后,而今,不幸的她再一次面临生命的考验.魔王已经发出消息说将在T时刻吃掉公主,因为他听信谣言说吃公主的肉也能长生不老.年迈的国王正是心急如焚, ...
- poj3134 Power Calculus
题目描述: 你现在有x^1,每动一步可以用当前存在的x^a和x^b获得x^(a+b)或x^(abs(a-b)).给出n(n<=1000),求最少多少步能得到x^n. 题解: IDDFS.枚举步数 ...
- Ubuntu环境修改IP地址方法
ubuntu环境修改IP地址方法和CentOS系统修改方法不太一样.ubuntu系统修改IP地址方法如下: 编辑/etc/network/interfaces,增加以下内容: auto eth0 if ...
- 零基础入门学习Python(4)--改进我们的小游戏
前言 在以前的博客中有做个一个小游戏,但是太简单了,所以这次就来对我们做的小游戏进行改进,改善从以下四个方面进行: 程序猜错的时候要给出提示,例如告诉用户输入的值是大了还是小了. 以前程序每运行一次只 ...
- Go:面向"对象"
一.封装 封装的实现步骤: 将结构体.字段的首字母小写(不能被导出): 给结构体所在的包提供一个工厂模式的函数,首字母大写.类似一个构造函数: 提供一个首字母大写的方法,由于获取结构体属性的值. 二. ...
- js中给正则传参、传递变量
js中验证字符串有时需要用到正则表达式,一般情况下直接写正则进行验证就行. 但是遇到需要把部分正则作为参数传递就麻烦一点,需要用到RegExp()对象. <script type="t ...
- windows 安装 python3
安装python------------------------------------------------------------ 1,打开连接https://www.python.org/do ...
- java中"=="和equals方法究竟有什么区别?
为什么会说到这个问题呢,是因为在java中遇到这个问题太常见了,无论是在写代码时还是在面试时.下面就一起探讨一下它们之间的联系与区别吧. 首先对于这样的问题,一般是先单独把一个东西说清楚,然后再说另一 ...