convex hull
1 什么是convex hull
就是凸包,是计算几何中的一个概念,计算几何是计算机图形学的基础之一。
对于二维平面来说是这样的:对于二维平面上的点集,凸包是位于最外层的点构成的包围其它所有的点的凸多边形。
2 Graham's scan算法
第一,找initial点
y最小的点,如果有多个,选择x也最小的点。
第二,对所有其它的点进行排序
计算initial点到所有其它点的连线和x轴的夹角,从小到大排列。
第三,找right turn
所谓的right turn就是从上个点到本点向对于上上个点到上个点是不是向右转了。如果是的话,就要删除掉上个点,而直接连上上个点,直到是left turn为止,进栈。
第四,找right turn的起始点
从第三个点就可以开始找了,先将前两个点入栈。
遍历完之后,栈里面所剩的点构成的多边形就是凸包。
3 算法的时间复杂度
O(nlgn)
4 算法的正确性
因为算法遍历了所有的点,并且保证了所有的点都在外接多边形构成的边的左边,所以就保证了所有的点都在该外接多边形的内部。 另外,所有的边都是向左走的,因此这个多边形是一个凸多边形,所以算法是正确的。
convex hull的更多相关文章
- 凸包(Convex Hull)构造算法——Graham扫描法
凸包(Convex Hull) 在图形学中,凸包是一个非常重要的概念.简明的说,在平面中给出N个点,找出一个由其中某些点作为顶点组成的凸多边形,恰好能围住所有的N个点. 这十分像是在一块木板上钉了N个 ...
- Convex Hull 实现理论+自制Python代码
Convex Hull 概述 计算n维欧式空间散点集的凸包,有很多的方法.但是如果要实现快速运算则其难点在于:如何快速判断散点集的成员是否是在凸集的内部.如果可以简化判断的运算过程,则可以极大简化迭代 ...
- OpenCV入门之寻找图像的凸包(convex hull)
介绍 凸包(Convex Hull)是一个计算几何(图形学)中的概念,它的严格的数学定义为:在一个向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包. 在图像处理过程中,我们 ...
- 2D Convex Hulls and Extreme Points( Convex Hull Algorithms) CGAL 4.13 -User Manual
1 Introduction A subset S⊆R2 is convex if for any two points p and q in the set the line segment wit ...
- Monotone Chain Convex Hull(单调链凸包)
Monotone Chain Convex Hull(单调链凸包)算法伪代码: //输入:一个在平面上的点集P //点集 P 按 先x后y 的递增排序 //m 表示共a[i=0...m]个点,ans为 ...
- opencv::凸包-Convex Hull
概念介绍 什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部. 正式定义:包含点集合S中所有点的最小凸多边形称为凸包 Graham扫描算法 首先选 ...
- Convex Hull | Set 1
Given a set of points in the plane. the convex hull of the set is the smallest convex polygon that c ...
- 2018牛客网暑假ACM多校训练赛(第三场)I Expected Size of Random Convex Hull 计算几何,凸包,其他
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round3-I.html 题目传送门 - 2018牛客多校赛第三场 I ...
- Gym 101986D Making Perimeter of the Convex Hull Shortest(凸包+极角排序)
首先肯定是构造一个完整的凸包包括所有的点,那么要使得刚好有两个点在外面,满足这个条件的只有三种情况. 1.两个在凸包上但是不连续的两个点. 2.两个在凸包上但是连续的两个点. 3.一个在凸包上,还有一 ...
随机推荐
- WebDriver的多浏览器测试的浏览器驱动程序
1.在使用IE浏览器进行WebDriver自动化测试之前,需要从http://docs.seleniumhq.org/download/网站上下载一个WebDriver链接IE浏览器的驱动程序,文件名 ...
- js中间件
js中间件 当我们在编写业务代码时候,我们无法避免有些业务逻辑复杂而导致业务代码写得又长又乱,如果再加上时间紧凑情况下写出来的代码估计会更让人抓狂.以至于我们一直在寻求更好的架构设计和更好的代码设计, ...
- margin负值应用
我理解的最关键的一点是: 在文档流中,只能是后面的流向前面的,即文档流只能向左或向上流动,不能向下或向右移动.第二个元素的基准线是第一个元素的右边界,第三个元素的基准线是第一.二个元素排好后最右边的边 ...
- jq进度条
<!doctype html><html><head><meta charset="utf-8"><title>JQue ...
- 洛谷——P4053 [JSOI2007]建筑抢修
P4053 [JSOI2007]建筑抢修 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者.但是T部落的基地里已经有N个建筑设施受到了严重的 ...
- android 如何从activity跳转到另一个activity下指定的fragment
思路: 跳转到目标fragment所在的activity,并传递一个flag,来确定要到哪个fragment,根据该flag判断后,跳转到指定的fragment即可. 代码: 当前界面: intent ...
- 04002_HTML表单
1.表单标签 (1)表单标签:所有需要提交到服务器的表单项必须使用<form></form>括起来: (2)from标签属性 ①action:整个表单提交的位置,可以是一个页面 ...
- Wireshark抓包工具的简单使用1(界面介绍)
Wireshark安装完成后,就可以打开,具体运行界面如下 一.菜单——用于开始操作 File ——包括打开.合并捕捉文件,save/保存,Print/打印,Export/导出捕捉文件的全部或部分.以 ...
- [luoguP1045] 麦森数(快速幂 + 高精度)
传送门 这道题纯粹是考数学.编程复杂度不大(别看我写了一百多行其实有些是可以不必写的). 计算位数不必用高精时刻存,不然可想而知时间复杂度之大.首先大家要知道一个数学公式 logn(a*b)=logn ...
- hdu 4091 数学思维题贪心
/* 参看博客地址:http://blog.csdn.net/oceanlight/article/details/7857713 重点是取完最优的后剩余的rest=n%lcm+lcm;中性价比小的数 ...