1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$

2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$$

3.  ${\bf C}$ 的表示: $$\beex \bea {\bf C}&={\bf F}^T{\bf C}=[{\bf I}+(\n{\bf u})^T]\cdot [{\bf I}+\n {\bf u}]\\ &={\bf I}+\n{\bf u}+(\n{\bf u})^T+(\n{\bf u})^T\n{\bf u},\\ {\bf C}-{\bf I}&=\n{\bf u}+(\n{\bf u})^T+(\n{\bf u})^T\n{\bf u}, \eea \eeex$$ 衡量物体相对参考构形而言的形状改变的一个尺度.

4.  当 $|\n {\bf u}|\ll 1$ 时, ${\bf C}-{\bf I}=2{\bf E}$, $$\bex {\bf E}=\cfrac{1}{2}\sez{\n{\bf u}+(\n{\bf u})^T} \eex$$ 称为无穷小应变张量 (Cauchy 应变张量).

(1)  ${\bf E}$ 的分量 $$\bex e_{ij}=\cfrac{1}{2}\sex{ \cfrac{\p u_i}{\p x_j}+\cfrac{\p u_j}{\p x_i}}. \eex$$

(2)  ${\bf E}$ 的分量的又一表达式 $$\beex \bea &\quad \cfrac{\p u_i}{\p x_j} =\sum_k \cfrac{\p u_i}{\p y_k}\cfrac{\p y_k}{\p x_j}\quad({\bf u}={\bf y}-{\bf x},\ |\n{\bf u}|\ll 1)\\ &\quad\quad\ \ =\sum_k \cfrac{\p u_i}{\p y_k}\sex{1+\cfrac{\p u_k}{\p x_j}}\quad({\bf F}={\bf I}+\n {\bf u})\\ &\quad\quad\ \ =\cfrac{\p u_i}{\p y_k}\\ &\ra e_{ij}=\cfrac{1}{2}\sex{\cfrac{\p u_i}{\p y_j}+\cfrac{\p u_j}{\p y_i}}. \eea \eeex$$

(3)  ${\bf E}$ 的几何意义

a.  $e_{ii}$. 取 $$\bex \rd {\bf x}^1=(\rd l_1,0,0)^T,\quad\rd {\bf x}^2=(0,\rd l_2,0)^T, \eex$$ 则 $$\beex \bea \rd {\bf y}^1&={\bf F}\rd {\bf x}^1=\sex{1+\cfrac{\p u_1}{\p x_1},\cfrac{\p u_2}{\p x_1},\cfrac{\p u_3}{\p x_1}}^T\rd l_1,\\ \rd {\bf y}^2&={\bf F}\rd {\bf x}^2=\sex{\cfrac{\p u_1}{\p x_2},1+\cfrac{\p u_2}{\p x_2},\cfrac{\p u_3}{\p x_2}}^T\rd l_2.  \eea \eeex$$ $\rd {\bf y}^1$ 的长度 $$\bex \rd \tilde l_1=\sqrt{\sex{1+2\cfrac{\p u_1}{\p x_1}}(\rd l_1)^2} =\sex{1+\cfrac{\p u_1}{\p x_1}}\rd l_1\ra \cfrac{\rd \tilde l_1-\rd l_1}{\rd l_1}=e_{11}. \eex$$ 故 $e_{11}$ 表示无穷小变形后, 原先在 ${\bf e}_1$ 方向的微线元的相对伸长.

b.  $e_{ij}\ (i\neq j)$. 由 $$\bex \rd {\bf y}^1\cdot\rd {\bf y}^2=\sex{\cfrac{\p u_1}{\p x_2}+\cfrac{\p u_2}{\p x_1}}\rd l_1\rd l_2 \eex$$ 知 $\rd {\bf y}^1,\rd {\bf y}^2$ 的夹角 $\tt$ 适合 $\cos\tt=2e_{12}$. 而变形前后夹角的变化 $$\bex \gamma=\cfrac{\pi}{2}-\tt=\sin \sex{\cfrac{\pi}{2}-\tt} =\cos\tt=2e_{12}. \eex$$ 故 $e_{12}$ 表示无穷小变形后, 原先在 ${\bf e}_1,{\bf e}_2$ 上的两微线元之间夹角的减少量的一半.

c.  $\tr {\bf E}$. 由 $$\bex J=\det{\bf F}=\det({\bf I}+\n {\bf u})=1+\tr {\bf E} \eex$$ 知 $\tr {\bf E}$ 表示无穷小变形过程中体积微元的相对增长.

[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量的更多相关文章

  1. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  2. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  3. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  4. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  5. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  6. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  7. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  8. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  9. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. 基于Angular和Spring WebFlux做个小Demo

    前言 随着Spring Boot2.0正式发布,Spring WebFlux正式来到了Spring Boot大家族里面.由于Spring WebFlux可以通过更少的线程去实现更高的并发和使用更少的硬 ...

  2. admin组件

    Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py 中的 INSTALLED_APPS 看到它 ...

  3. maven-assembly-plugin打包可执行的jar包

    pom.xml添加 <build> <plugins> <plugin> <artifactId>maven-assembly-plugin</a ...

  4. [LeetCode] 6. Z 字形变换

    题目链接:(https://leetcode-cn.com/problems/zigzag-conversion/) 题目描述: 将一个给定字符串根据给定的行数,以从上往下.从左到右进行 Z 字形排列 ...

  5. Python爬虫-爬取豆瓣电影Top250

    #!usr/bin/env python3 # -*- coding:utf-8-*- import requests from bs4 import BeautifulSoup import re ...

  6. redis 初步认识一(下载安装redis)

    1.下载redis  https://github.com/MicrosoftArchive/redis/releases 2.开启redis服务 3.使用redis 4.redis可视化工具 一 开 ...

  7. Codeforces Global Round 2 Solution

    这场题目设置有点问题啊,难度:Div.2 A->Div.2 B->Div.2 D->Div.2 C->Div.2 D->Div.1 D-> Div.1 E-> ...

  8. 基于 HTML5 WebGL 的 3D 工控裙房系统

    前言 工业物联网在中国的发展如火如荼,网络基础设施建设,以及工业升级的迫切需要都为工业物联网发展提供了很大的机遇.中国工业物联网企业目前呈现两种发展形式并存状况:一方面是大型通讯.IT企业的布局:一方 ...

  9. HTML页面全屏/退出全屏

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 小小知识点(六)——算法中的P问题、NP问题、NP完全问题和NP难问题

    转自CSDN默一鸣 https://blog.csdn.net/yimingsilence/article/details/80004032 在讨论算法的时候,常常会说到这个问题的求解是个P类问题,或 ...