1. Numpy VS Torch

#相互转换
np_data = torch_data.numpy()
torch_data = torch.from_numpy(np_data)
#abs
data = [1, 2, -2, -1] #array
tensor = torch.FloatTensor(data) #32bit 传入普通数组
np.abs(data); torch.abs(tensor);
#矩阵相乘
data.dot(data) #但是要先转换为numpy的data data=np.array(data)
torch.mm(tensor, tensor)

2. Variable

#引入
from torch.autograd import Variable
#声明
variable = Varible(tensor, requires_grad=True)
variable.data #type是tensor

3. Activation Function 激励函数

y = AF(Wx) 画图

#引入
import torch.nn.function as F
import matplotlib.pyplot as plt
#fake data
x = torch.linspace(-5, 5, 200)
x = Variable(x)
x_np = x.data.numpy() ***
#activation
y_relu = F.relu(x).data.numpy() *** plt.plot(x_np, y_relu, c='red', label='relu')

4. Regression 回归

# 动态更新画图
plt.ion()
plt.show() #for循环中的if条件内部
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data, fontdict={'size':20, 'color': 'red'})
plt.pause(0.1) #for外部
plt.ioff()
plt.show() #net层的定义看regression代码!

5. Classification 分类

#二元分类 模拟数据 及 画图
n_data = torch.ones(100, 2) # shape(100, 2)
x0 = torch.normal(2*n_data, 1)
y0 = torch.zeros(100)
x1 = torch.normal(-2*n_data, 1)
y1 = torch.ones(100)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)
y = torch.cat((y0, y1)).type(torch.LongTensor) #label 只能是integer类型 x, y = Variable(x), Variable(y) plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
plt.show() #输入二维 hiddenlayer10个神经元 输入也是二维
net = Net(2, 10, 2) #优化使用
loss_func = torch.nn.CrossEntropyLoss() #for循环内部 区分out 和 prediction
out = net(x) #此时的out格式是很乱的
loss = loss_func(out, y) #两者的误差 prediction = torch.max(F.softmax(out), 1)[1] # 过了一道 softmax 的激励函数后的最大概率才是预测值
accuracy = sum(pre_y == target_y) / 200 #预测有多少和真实值一样

6. 快速搭建法

net = torch.nn.Sequential(
torch.nn.Linear(2, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 2)
)

7. 保存提取

使用两种方式提取整个神经网络:提取整个网络或只提取参数。

两段式声明,在save中保存,在restore中提取,最后显示。

def save():
#建网络#
#训练#
#保存
torch.save(net1, 'net.pkl') #保存整个网络
torch.save(net1.state_dict(), 'net_params.pkl') #只保存网络中的参数 #提取整个网络
def restore_net():
net2 = torch.load('net.pkl')
prediction = net2(x) #只提取网络参数
def restore_params():
net3 = ... #net3 = net1
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x) #显示结果
save()
restore_net()
restore_params()

8. 批数据训练

#数据引入
import torch.utils.data as Data
# 先定义batchsize
BATCH_SIZE = 5
# 转换torch为Dataset
torch_dataset = Data.TensorDataset(x, y) #(1)
loader = Data.DataLoader(...)
#for循环内的读取
for step, (batch_x, batch_y) in enumerate(loader):
#如果在loader中开了多线程
if __name__ == '__main__': #加上双线程的入口
#(1)

9. Optimizer 优化器

#给每个优化器优化一个神经网络
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] #创建不同的优化器来训练不同的网络,并创建loss_func来计算误差
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []] # 记录 training 时不同神经网络的 loss #训练每个优化器,优化属于自己的神经网络
for epoch in range(EPOCH):
print('Epoch: ', epoch)
for step, (b_x, b_y) in enumerate(loader):
for net, opt, l_his in zip(nets, optimizers, losses_his): #都是列表
output = net(b_x) # get output for every net
loss = loss_func(output, b_y) # compute loss for every net
opt.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
opt.step() # apply gradients
l_his.append(loss.data.numpy()) # loss recoder #画图
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()

莫烦 - Pytorch学习笔记 [ 一 ]的更多相关文章

  1. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  2. 莫烦pytorch学习笔记(七)——Optimizer优化器

    各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...

  3. 莫烦PyTorch学习笔记(五)——模型的存取

    import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...

  4. 莫烦PyTorch学习笔记(六)——批处理

    1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...

  5. 莫烦pytorch学习笔记(二)——variable

    .简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...

  6. 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )

    CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...

  7. 莫烦PyTorch学习笔记(五)——分类

    import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.p ...

  8. 莫烦PyTorch学习笔记(四)——回归

    下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了 import torch from torch.autograd import Variable import torch. ...

  9. 莫烦PyTorch学习笔记(三)——激励函数

    1. sigmod函数 函数公式和图表如下图     在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率.sigmod函数 ...

  10. 莫烦pytorch学习笔记(一)——torch or numpy

    Q1:什么是神经网络? Q2:torch vs numpy Numpy:NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(neste ...

随机推荐

  1. 最漂亮的Spring事务管理详解

    SnailClimb 2018年05月21日阅读 7245 可能是最漂亮的Spring事务管理详解 Java面试通关手册(Java学习指南):github.com/Snailclimb/- 微信阅读地 ...

  2. 通过WMI获取网卡MAC地址、硬盘序列号、主板序列号、CPU ID、BIOS序列号

    转载:https://www.cnblogs.com/tlduck/p/5132738.html #define _WIN32_DCOM #include<iostream> #inclu ...

  3. 牛客小白赛4 C题

    乘法逆元: 一个数a 乘上 b,在mod之后再还原成本来的数 a 这里就要用到乘法逆元,(a*b)%mod*inv(b,mod)==a ll exgcd(ll a,ll b,ll &x,ll ...

  4. Android 调起系统相机拍照

    概述 最近在看 nanChen 写的图片选择器 ImagePicker,感觉写得很不错,也打算把从中学到的东西写下来.很多时候,遇到一个好的框架能够降低开发成本这是好事.但是也要去了解其内部具体实现逻 ...

  5. ZooKeeper技术总结

    因为之前学习并使用了Kafka,所以专门查看了有关zookeeper相关的资料,看了大量的博客及官网资料,也因为有些地方理解不清楚向认识的专业人士进行了咨询,这里对这段时间的学习进行总结. ZooKe ...

  6. spring web 测试用例

    spring web 测试有三种方式 1. 自己初始化 MockMvc 2.依赖@springbootTest 它会帮你生产 webTestClient ,只需自己注入即可. 3.启动的时候,不加载整 ...

  7. 前x个数据中至少有m个元素最小值与最大值之差不超过K

    题意 给一组数据,从左到右开始,寻找最小的x,使得第1个元素到第x个元素中,至少存在m个数据,最小值与最大值之差不超过K. INPUT 第一行是T,代表数据组数 每组数据的第一行是三个整数,n.m.k ...

  8. win 10 家庭中文版安装docker ,但是没有 Hyper-V , 这样一步搞定

    本人要在 win 10 上安装docker,找了安装教程,按照安装教程,第一步开启Hyper-V 虚拟机,但是发现自己电脑上没有这个选项 然后找到了这位仁兄  http://www.win7999.c ...

  9. mDNS故障排查(译)

    WLC上mDNS网关的理解及排查 第一部分:介绍 这篇文档描述了Bonjour协议在WLC上的操作,该文档旨在协助工程师理解该工作流量的原理以及提供故障排查的指导. 第二部分:需求和前提 知识需求: ...

  10. Nexus-vPC与FHRP

    去往vPC的流量,如何可能将会被本地的vPC成员端口所转发.FHRP的行为是被修改的,所有的FHRP路由器都会主动转发从vPC收到的流量.修改结果:如果可能,流量避免使用Peer link,这样创建一 ...