【机器学习】--Adaboost从初始到应用
一、前述
AdaBoost算法和GBDT(Gradient Boost Decision Tree,梯度提升决策树)算法是基于Boosting思想的机器学习算法。在Boosting思想中是通过对样本进行不同的赋值,对错误学习的样本的权重设置的较大,这样,在后续的学习中集中处理难学的样本,最终得到一系列的预测结果,每个预测结果有一个权重,较大的权重表示该预测效果较好。
二、具体原理
AdaBoost,是英文"Adaptive Boosting"(自适应増强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个基本分器分错的样本会得到加强,加权后的全体样本再次被用来训练、下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。

1、算法过程
1. 初始化训练数据的权值分布。如果有 N 个样本,则每一个训练样本最开始时都被赋予相同的权重:1/ N
2. 训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权重就被降低;相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。然后,权重更新过的样本集被用于训练下一个类器,整个训练过程如此迭代地进行下去。
3. 将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
2、具体过程
给定一个训练数据集 T ={( x 1, y 1), ( x 2, y 2)...( xN , yN )},其中实例 ;r e 义, yi 属于标记集合{-1, + 1}, Adaboost 的目的就是从训练数据中学习一系列弱分类器或基本分类器,然后从这些弱分类器组合成一个强分类器。
Adaboost 的算法流程如下:



三、案例分析












【机器学习】--Adaboost从初始到应用的更多相关文章
- 机器学习——AdaBoost元算法
当做重要决定时,我们可能会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题也是这样,这就是元算法(meta-algorithm)背后的思路. 元算法是对其他算法进行组合的一种方式,其中最流行的一 ...
- 机器学习——Adaboost
1 Adaboost 的提出 1990年,Schapire最先构造出一种多项式级的算法,即最初的Boost算法; 1993年,Drunker和Schapire第一次将神经网络作为弱学习器,应用Boos ...
- [机器学习]-Adaboost提升算法从原理到实践
1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好.在”强可学习”和”弱可学习”的概念上来说就是我们通过对多个弱可学习的算法进行”组合提升或者说是强化”得到一个性能赶超强可学习算法的算 ...
- 【机器学习】--LDA初始和应用
一.前述 LDA是一种 非监督机器学习 技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息.它采用了词袋(bag of words)的方法 ...
- 【机器学习】--xgboost初始之代码实现分类
一.前述 上节我们讲解了xgboost的基本知识,本节我们通过实例进一步讲解. 二.具体 1.安装 默认可以通过pip安装,若是安装不上可以通过https://www.lfd.uci.edu/~goh ...
- Rapid Object Detection using a Boosted Cascade of Simple Features 部分翻译
Rapid ObjectDetection using a Boosted Cascade of Simple Features 使用简单特征级联分类器的快速目标检测 注:部分翻译不准处以红色字体给出 ...
- 【机器学习笔记之四】Adaboost 算法
本文结构: 什么是集成学习? 为什么集成的效果就会好于单个学习器? 如何生成个体学习器? 什么是 Boosting? Adaboost 算法? 什么是集成学习 集成学习就是将多个弱的学习器结合起来组成 ...
- 机器学习之Adaboost (自适应增强)算法
注:本篇博文是根据其他优秀博文编写的,我只是对其改变了知识的排序,另外代码是<机器学习实战>中的.转载请标明出处及参考资料. 1 Adaboost 算法实现过程 1.1 什么是 Adabo ...
- 机器学习之AdaBoost原理与代码实现
AdaBoost原理与代码实现 本文系作者原创,转载请注明出处: https://www.cnblogs.com/further-further-further/p/9642899.html 基本思路 ...
随机推荐
- yii2.0 集成/引入第三方sdk
首先下载自己要使用的sdk包放到vendor文件夹下面:我以接入ping++为例子如下: 然后在入口文件出引入文件的配置文件: 下面就是在控制器使用了: 下面就可以根据自己要使用的的文件以及方法正常调 ...
- MySQL 8 新特性之降序索引
MySQL 8.0终于支持降序索引了.其实,从语法上,MySQL 4就支持了,但正如官方文档所言,"they are parsed but ignored",实际创建的还是升序索引 ...
- Oracle解决Ora-01653无法扩展表空间问题
先针对可能性1查看表空间使用情况 SELECT UPPER(F.TABLESPACE_NAME) "表空间名", D.TOT_GROOTTE_MB "表空间大小(M) & ...
- 树莓派.安装Firefox浏览器
sudo apt-get install firefox-esr 要做全屏效果的话, 可以加装插件FF Fullscreen 插件地址: https://addons.mozilla.org/en-U ...
- django(权限、认证)系统——自定义UserProfile储存User额外信息
上篇文章我们引出了Django内置的权限控制系统,讲了安装,和最核心和基本的User模型的API和其Manager的API. 接下来我们继续深入下去,使用User对象做一些事情,首先当然就是创建一个U ...
- nsqd.go
}
- BZOJ_1132_[POI2008]Tro_计算几何
BZOJ_1132_[POI2008]Tro_计算几何 Description 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Input 第一行给出数字N,N在[3 ...
- BZOJ_5301_[Cqoi2018]异或序列&&CF617E_莫队
Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...
- 【小白学C#】谈谈C#多播委托因异常而终止的解决方案
一.前言 前几天,马三在与朋友闲聊技术的时候,朋友忽然抛出一个问题,把马三难倒了,本着求知的精神,回来以后马三就查阅了相关资料并做了一些实验,终于把问题搞明白了,因此写下本篇博客记录一下.首先,问题是 ...
- ArcGIS API for JavaScript 入门教程[2] 授人以渔
这篇仍然不讲怎么做,但是我要告诉你如何获取资源. 目录:https://www.cnblogs.com/onsummer/p/9080204.html 转载注明出处,博客园/CSDN/B站:秋意正寒. ...