paper122:多尺度与多分辨率的关系
本文转自:http://blog.csdn.net/chgm_456d/article/details/8100513
我一直对于 多尺度与多分辨率没有一个准确的概念。后来看了一些文章,其中xiaowei_cqu博客的一篇文章“【OpenCV】SIFT原理与源码分析:DoG尺度空间构造”(以下简称,xiaowei一文),写的很好,分享一下:
尺度空间(scale space)理论
要理解多尺度,首先要知道什么是尺度空间。xiaowei一文中提到,自然界中的物体呈现出不同的形态,需要不同的尺度观测。比如,建筑物用“米”测量,原子用“纳米”。比较形象的是,在平常使用的Google地图,可以滑动鼠标来改变地图的尺度;照相机通过调焦,将景物拉近拉远。尺度空间中各尺度图像的模糊程度逐渐变大,模拟了景物由近到远在视网膜形成过程。
为什么要讨论尺度空间?因为计算机在不知道图像尺寸的情况下,需要考虑多尺度以获取兴趣物体的最佳尺度。同时,在一幅图像的不同尺度下检测出相同的关键点来匹配,即尺度不变性。
尺度空间表达——高斯模糊
David Lowe 2004年 在Int. Journal of Computer Vision 的经典论文(Distinctive Image Features from Scale-Invariant Keypoints)中,对尺度空间的定义:
“It has been shown by Koenderink (1984) and Lindeberg (1994) that under a variety of reasonable assumptions the only possible scale-space kernel is the Gaussian function. Therefore, the scale space of an image is defined as a function, L(x, y, σ), that is produced from the convolution of a variable-scale Gaussian, G(x, y, σ), with an input image, I (x, y)."
抽取要点:
1. 高斯核是唯一可以产生多尺度空间的核;
2. 一幅图像的尺度空间 L(x, y, σ), 定义为原始图像 I(x,y) 与一个可变尺度的2维高斯函数G(x, y, σ)卷积运算。
即尺度空间形式表示为:

其中,

(金字塔)多分辨率表达——降采样
图像金字塔化一般包括两个步骤:使用低通滤波器平滑图像;对图像进行降采样(通常是水平,竖直方向1/2),从而得到一系列尺寸缩小的图像。对于二维图像,每一层图像由上一层分辨率的长、宽各一半,也就是四分之一的像素组成。

多尺度和多分辨率的区别
最大的不同:
尺度空间表达是由不同高斯核平滑卷积得到,在所有尺度上有相同的分辨率;
而(金字塔)多分辨率表达每层分辨率减少固定比率。
所以,(金字塔)多分辨率生成较快,且占用存储空间少;而多尺度表达随着尺度参数的增加冗余信息也变多。
多尺度表达的优点在于图像的局部特征可以用简单的形式在不同尺度上描述;而(金字塔)多分辨的表达没有理论基础,难以分析图像局部特征。
paper122:多尺度与多分辨率的关系的更多相关文章
- SEPC:使用3D卷积从FPN中提取尺度不变特征,涨点神器 | CVPR 2020
论文提出PConv为对特征金字塔进行3D卷积,配合特定的iBN进行正则化,能够有效地融合尺度间的内在关系,另外,论文提出SEPC,使用可变形卷积来适应实际特征间对应的不规律性,保持尺度均衡.PConv ...
- 《DSOD:Learning Deeply Supervised Object Detectors from Scratch》翻译
原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架, ...
- 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论 自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...
- Image Processing and Analysis_8_Edge Detection:Multiresolution edge detection techniques ——1995
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- Image Processing and Computer Vision_Review:Local Invariant Feature Detectors: A Survey——2007.11
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来 ...
- 2020国防科大综述:3D点云深度学习——综述(3D点云分割部分)
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀 ...
- BRISK: Binary Robust Invariant Scalable Keypoints
注意:本文含有一些数学公式,如果chrome不能看见公式的话请用IE打开网站 1.特征点提取 特征点提取有以下几个步骤: a.尺度空间金字塔结构的构造 和SIFT类似,尺度空间金字塔是由不同的尺度 ...
- SURF分析算法
SURF分析算法 一个.整体形象 这个概念是积分图像Viola和Jones建议.随机位积分图像(i.j)的值原始图象的左上角随机点(i,j)级配相应的重点领域值的总和,其数学公式如图1所看到的 ...
- human pose estimation
2D Pose estimation主要面临的困难:遮挡.复杂背景.光照.真实世界的复杂姿态.人的尺度不一.拍摄角度不固定等. 单人姿态估计 传统方法:基于Pictorial Structures, ...
随机推荐
- python序列
序列基础 序列:python包含6种内建的序列,常用的有:列表.元组.字符串.列表可以修改,元组和字符串不能修改. 索引:从0开始递增,通过索引获取元素:可使用负数索引,从右至左.最后1个元素的位置编 ...
- 修复VS,恢复初始状态
命令提示 输入命令: devenv.exe /resetuserdata 处理版本221优化改动:1.SQL优化,采用预编译方式并将SQL语句修改为大写,尽量减少Oracle数据库硬解析2.复用部分代 ...
- 《bootstrap》实战---小问题,大Bug
参照书中代码写了个示例,能够实现大页面单行导航,小页面显示收缩按钮,但是就是不能让收缩按钮发挥作用.也不知道哪儿出了问题. 想想算了,代码也不多,重新来吧.写道导航的时候,突然发现一个<nav& ...
- js模版引擎handlebars.js实用教程——为什么选择Handlebars.js
返回目录 据小菜了解,对于java开发,涉及到页面展示时,比较主流的有两种解决方案: 1. struts2+vo+el表达式. 这种方式,重点不在于struts2,而是vo和el表达式,其基本思想是: ...
- 解决echsop兼容jquery(transport.js的冲突)的问题
方案一: 本人亲测过,可以用.有的人说需要删除js目录下的gobal.js文件,否则依然会冲突.我没删除也解决了冲突. 1.加入JSON2.js文件 原因很简单,transport修改Object是为 ...
- python-socket-SocketServer - Forking
在之前的文章中,客户端和服务端.一般情况下并非是一对一的关系.多对一,多个客户端连接一个服务端.并且服务端需要对每一个客户端进行信息处理. 在客户端不多的情况下,可以采取为每一个客户端创建一个进程对其 ...
- 安装oracle 11g时出现启动服务出现错误,找不到OracleMTSRecoveryService
运行注册表(cmd-输入regedit),到 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services下,找到OracleMTSRecoveryServ ...
- linux建立文件夹软连接
linux建立文件夹软连接,并强制覆盖 ln -sfn /home/var/log/httpd/logs logs 这将在当前目录下建立logs软连接,指向/home/var/log/httpd/lo ...
- Thinking in Java——笔记(12)
Error Handling with Exceptions The ideal time to catch an error is at compile time, before you even ...
- 【Git学习笔记】远程仓库
第一种情景:本地初始化一个Git仓库后,接着又在github上创建了一个Git仓库,现在要让这两个仓库进行远程同步. 1. 关联本地仓库就和远程仓库 $ git remote add origin ...