Codevs 4357 不等数列
不等数列
【题目描述】
将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”。问在所有排列中,有多少个排列恰好有k个“<”。答案对2012取模。
【输入格式】
第一行2个整数n,k。
【输出格式】
一个整数表示答案。
【样例输入】
5 2
【样例输出】
66
【数据范围】
对于30%的数据:n <= 10
对于100%的数据:k < n <= 1000,
对于30% n<=10的数据,搜索打表,状态压缩动态规划......
对于1--n等类似的排列计数问题,以动态规划和组合数学2种大方向为基本解决方向。
组合数学在noip最难也就到杨辉三角左右,所以这题我从动态规划展开。
如果此类排列问题在脑中的模型是:“有n个格子,填入1--n”,那么相对应的DP就不得不记录哪些数填过了(从左到右填入)或者哪些格子填过了(从小到大填入)。这样一来就必须要使用状态压缩来存储这些信息,就使得复杂度变得难以接受。
而如果换个模型:“从小到大把数字插入数列”。注意是数列而不是格子,这样一来就不需要记录是哪些数字插入了(而只要记录插入到了第几个数字),同时不需要记录每个数字的具体位置,也不需要记录数字的相对位置,而只需记录相对关系的数目(对本题而言就是有几个“<”)。
因为是从小到大插入数字,所以当前插入的数字一定大于所有已经插入的。
蓝色是当前插入的数字,如果它插入到<关系的2个数字之间(或者数列最左端),就会使数列的<数量不变,>数量+1:
类似的,插入到>关系的2个数字之间(或者数列最右端),数列的<数量+1,>数量不变。
F[i][j]表示前i个数字构成的数列中,恰有j个‘<’号的方案数(‘>’号就有i-j-1个)。
F[i][j]=F[i-1][j-1]*(i-j)+F[i-1][j]*(j+1).
时空复杂度:O(n^2)
若打表则时间复杂度为O(1)
#include<iostream>
#include<cstdio>
using namespace std;
int n,k,f[][];
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)f[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<i;j++)
f[i][j]=max(f[i][j],f[i-][j-]*(i-j)%+f[i-][j]*(j+)%)%;
cout<<f[n][k];
}
Codevs 4357 不等数列的更多相关文章
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- 模拟赛 Problem 2 不等数列(num.cpp/c/pas)
Problem 2 不等数列(num.cpp/c/pas) [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- [模拟赛] T2 不等数列
Description 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个&qu ...
- 【P2401】不等数列(DP)
这个题乍一看就应该是DP,再看一眼数据范围,1000..那就应该是了.然后就向DP的方向想,经过对小数据的计算可以得出,如果我们用f[i][j]来表示前i个数有j个是填了"<" ...
- Codevs 1976 Queen数列
1976 Queen数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 将1到N的整数数列(1,2,3,… ...
- luogu P2401 不等数列 |动态规划
题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个"< ...
- 洛谷 P2401 不等数列 题解
每日一题 day25 打卡 Analysis dp[i][j]=dp[i-1][j-1]*(i-j)+dp[i-1][j]*(j+1); 其中i和j是表示前i个数中有j个小于号,j<=i-1 要 ...
- P2401 不等数列
题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2015取模. 注:1~n的排列指的是1 ...
随机推荐
- 字符串的朴素模式和KMP模式匹配
先复习一下字符串指针: #include <iostream> #include <string.h> using namespace std; int main() { ch ...
- [2018-05-27]配置VSTS认证方式使用Personal Access Token
本文介绍下如何配置VSTS(visual studio team service,其实就是微软SaaS版的TFS)通过Personal Access Token访问其下的Git代码库. 问题 使用gi ...
- iOS 开发实践之 Auto Layout
原:http://xuexuefeng.com/autolayout/?utm_source=tuicool 本文是博主 iOS 开发实践系列中的一篇,主要讲述 iOS 中 Auto Layout(自 ...
- Swift 烧脑体操(一) - Optional 的嵌套
前言 Swift 其实比 Objective-C 复杂很多,相对于出生于上世纪 80 年代的 Objective-C 来说,Swift 融入了大量新特性.这也使得我们学习掌握这门语言变得相对来说更加困 ...
- CMake最好的学习资料
本文为转载,阅读不友好,请先查看原文:https://blog.gmem.cc/cmake-study-note 收下为原文内容================> 基础知识 CMake简介 CM ...
- 用vector代替实现二维数组
vector可以用来模拟数组,当然也可以用来模拟二维数组: 定义如:vector<int>a[100]; 相当于定义了一个100行的数组,当每行的大小是不确定的 模板应用如下: #in ...
- Mysql中文检索匹配与正则
今天在用sql模糊查询包含字母d的时候,发现一些不包含此字母的也被查询出来了: SELECT * FROM custom WHERE custom_realname LIKE '%d%' 查询了一下, ...
- python学习笔记:第七天(函数)
Python3 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率. 与C一样,Python提供了许多内建函数,比如print().同 ...
- Hotel California
On a dark desert highway行驶在昏黑的荒漠公路上cool wind in my hair凉风吹过我的头发warm smell of colutas温馨的大麻香rising up ...
- Katalon Recorder 自动录制 Selenium 爬虫脚本
相信很多小伙伴都用过 Selenium 来完成爬虫工作,今天就给大家带来一个神器,可以录制你的浏览器动作,然后直接生成 Selenium 脚本,是不是心动了? 1 Selenium 简介 Seleni ...