Uoj308【UNR #2】UOJ拯救计划
分析:比较难分析的一道题,先把式子写出来,ans=∑C(k,i)*f(i),f(i)是选i个颜色的方案数.这个模数有点奇怪,比较小而且是合数,说不定就会有某种规律,如果i >= 3,可以发现C(k,i)一定是被6整除的,那么我们只需要考虑i=2和i=1的情况,i=1的情况比较好处理,这种情况下,m只有等于0,答案为k^n,然后可以发现,这不仅仅是对i=1的情况的分析,所以我们要先特判m=0.
那么i=2的情况要怎么处理呢?把每个连通块单独分析,如果一个连通块有一个合法方案,反过来又是一个合法方案,所以一个连通块要么没有贡献,要么就是2,我们只需要把有贡献的连通块的个数cnt求出来,答案就是C(k,2)*2^cnt.一旦有一个连通块没有合法方案,那么答案就直接为0了.
二分图方案数要一个一个连通块考虑,求方案数如果不用dp先写出式子,然后分析.如果模数非常奇怪,找找看有没有什么规律.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath> using namespace std; int T,n,m,k,head[],nextt[],to[],tot = ;
int col[],ans;
bool flag = false; void add(int x,int y)
{
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++;
} int qpow(int a,int b)
{
int res = ;
while (b)
{
if (b & )
res = (res * a) % ;
b >>= ;
a = (a * a) % ;
}
return res;
} void dfs(int x,int c)
{
col[x] = c;
for (int i = head[x];i;i = nextt[i])
{
int v = to[i];
if (col[v])
{
if (col[v] == col[x])
{
flag = ;
break;
}
}
else
dfs(v, - c);
}
} int main()
{
scanf("%d",&T);
while (T--)
{
memset(head,,sizeof(head));
memset(col,,sizeof(col));
ans = ;
tot = ;
flag = ;
scanf("%d%d%d",&n,&m,&k);
if (m == )
printf("%d\n",qpow(k,n));
else
{
for (int i = ; i <= m; i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for (int i = ; i <= n; i++)
{
if (!col[i])
{
dfs(i,);
if (flag)
{
ans = ;
break;
}
ans *= ;
ans %= ;
}
}
printf("%d\n",((((k - ) * k / )% ) * ans) % );
}
} return ;
}
Uoj308【UNR #2】UOJ拯救计划的更多相关文章
- [UOJ UNR#2 UOJ拯救计划]
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...
- 【UOJ#308】【UNR#2】UOJ拯救计划
[UOJ#308][UNR#2]UOJ拯救计划 题面 UOJ 题解 如果模数很奇怪,我们可以插值一下,设\(f[i]\)表示用了\(i\)种颜色的方案数. 然而模\(6\)这个东西很有意思,\(6=2 ...
- uoj308 【UNR #2】UOJ拯救计划
传送门:http://uoj.ac/problem/308 [题解] 考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$ 意思是从$k$所选$i$所出来染色,$c ...
- 【UNR #2】UOJ拯救计划
UOJ小清新题表 题目内容 UOJ链接 题面太长了(其实是我懒得改LaTeX了) 一句话题意: 给出 \(n\) 个点和 \(m\) 条边,对其进行染色,共 \(k\) 种颜色,要求同一条边两点颜色不 ...
- A. 【UNR #2】UOJ拯救计划
题解: 感觉多了解一些npc问题是很有用的.. 就不会像我一样完全不考虑模数的性质 前面60分大概是送分 后面主要考虑一下%6带来的影响 平常都是那么大的模数,突然这么小??? 考虑正好使用k种颜色的 ...
- 2018.10.25 uoj#308. 【UNR #2】UOJ拯救计划(排列组合)
传送门 有一个显然的式子:Ans=∑A(n,i)∗用i种颜色的方案数Ans=\sum A(n,i)*用i种颜色的方案数Ans=∑A(n,i)∗用i种颜色的方案数 这个东西貌似是个NPCNPCNPC. ...
- uoj#308. 【UNR #2】UOJ拯救计划(并查集)
传送门 如果把答案写出来,就是\(\sum_{i=1}^ki!\times {k\choose i}\times f_i\),其中\(f_i\)为选\(i\)种颜色方案 发现如果\(i\geq 3\) ...
- UOJ #460 新年的拯救计划
清真的构造题 UOJ# 460 题意 求将$ n$个点的完全图划分成最多的生成树的数量,并输出一种构造方案 题解 首先一棵生成树有$ n-1$条边,而原完全图只有$\frac{n·(n-1)}{2}$ ...
- UOJ#460. 新年的拯救计划 构造
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ460.html 题解 本题的构造方法很多.这里只介绍一种. 首先,总边数为 $\frac{n(n-1)}2 ...
随机推荐
- python数据可视化——matplotlib 用户手册入门:pyplot 画图
参考matplotlib官方指南: https://matplotlib.org/tutorials/introductory/pyplot.html#sphx-glr-tutorials-intro ...
- CSP201312-3:最大的矩形
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- openvpn部署
原文发表于cu:2016-03-29 参考文档: 安装:http://qicheng0211.blog.51cto.com/3958621/1575273 安装:http://www.ipython. ...
- [T-ARA][Falling U]
歌词来源:http://music.163.com/#/song?id=27506041 作词:韩尚元 [作词:韩尚元] 作曲:韩尚元 [作曲:韩尚元] Love is pain Love is pa ...
- Qt绘图
Qt绘图的设置 QPainter::Antialiasing // 反锯齿 QPainter::TextAntialiasing // 文字反锯齿 QPainter::SmoothPixmapTran ...
- 美国警察iPhone数据线挡住歹徒子弹获救
泡泡网手机频道11月1日 现在手机的功能越来越丰富,不仅可以接打电话.收发短信.玩游戏聊天,关键时刻还能救命.前天HTC手机再次忠心护主,让许多同学对HTC赞赏有加.而现在又有人捡了一条命,不过这次救 ...
- Python Requests库入门——应用实例-京东商品页面爬取+模拟浏览器爬取信息
京东商品页面爬取 选择了一款荣耀手机的页面(给华为打广告了,荣耀play真心不错) import requests url = "https://item.jd.com/7479912.ht ...
- 03慕课网《vue.js2.5入门》——Vue-cli的安装,创建webpack模板项目
安装Vue-cli 第一种 貌似不可以,然后用了第二种,但是重装系统后,第二种不能用了,用了第一种可以 # 全局安装vue -cli命令npm install --global vue-cli # 创 ...
- ASP.NET MVC5 学习系列之表单和HTML辅助方法
一.表单 (一)Action和Method特性 Action特性用以告知浏览器信息发往何处,因此,Action特性后面需要包含一个Url地址.这里的Url地址可以是相对的,也可以是绝对的.如下Form ...
- a5
今日内容: 今天主要还是素材的查找,图标的制作以及调整. 明日计划: 主要还是完成图标,尽可能的美化 困难: 一个是直男式的审美吧,另一个是PS的技术还不够深