OpenCV---图像梯度
图像梯度
推文:【OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导。 Sobel算子是普通一阶差分,是基于寻找梯度强度。
拉普拉斯算子(二阶差分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。




一:sobel算子
def sobel_demo(image):
grad_x = cv.Sobel(image,cv.CV_32F,,) #获取x轴方向的梯度,对x求一阶导,一般图像都是256,CV_8U但是由于需要进行计算,为了避免溢出,所以我们选择CV_32F
grad_y = cv.Sobel(image, cv.CV_32F, ,) # 获取y轴方向的梯度,对y求一阶导
gradx = cv.convertScaleAbs(grad_x) #用convertScaleAbs()函数将其转回原来的uint8形式,转绝对值 (转为单通道,0-255)
grady = cv.convertScaleAbs(grad_y)
cv.imshow("gradient-x",gradx)
cv.imshow("gradient-y",grady) gradxy = cv.addWeighted(gradx,0.5,grady,0.5,) #图片融合
cv.imshow("gradient",gradxy)

补充:在sobel算子的基础上还有一种Scharr算子,可以获取更强的边缘检测(噪声比较敏感,需要降噪)
grad_x = cv.Scharr(image,cv.CV_32F,,) #获取x轴方向的梯度,对x求一阶导,一般图像都是256,CV_8U但是由于需要进行计算,为了避免溢出,所以我们选择CV_32F
grad_y = cv.Scharr(image, cv.CV_32F, ,) # 获取y轴方向的梯度,对y求一阶导

相关知识补充:
(一)Sobel算子
Sobel算子用来计算图像灰度函数的近似梯度。Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。
Sobel具有平滑和微分的功效。即:Sobel算子先将图像横向或纵向平滑,然后再纵向或横向差分,得到的结果是平滑后的差分结果。
def Sobel(src, ddepth, dx, dy, dst=None, ksize=None, scale=None, delta=None, borderType=None): # real signature unknown; restored from __doc__
src参数表示输入需要处理的图像。 ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。 具体组合如下:
src.depth() = CV_8U, 取ddepth =-/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F)
src.depth() = CV_16U/CV_16S, 取ddepth =-/CV_32F/CV_64F
src.depth() = CV_32F, 取ddepth =-/CV_32F/CV_64F
src.depth() = CV_64F, 取ddepth = -/CV_64F
注:ddepth =-1时,代表输出图像与输入图像相同的深度。 dx参数表示x方向上的差分阶数,1或0 。 dy参数表示y 方向上的差分阶数,1或0 。 dst参数表示输出与src相同大小和相同通道数的图像。 ksize参数表示Sobel算子的大小,必须为1、、、。 scale参数表示缩放导数的比例常数,默认情况下没有伸缩系数。 delta参数表示一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。 borderType表示判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。
(二)convertScaleAbs
def convertScaleAbs(src, dst=None, alpha=None, beta=None): # real signature unknown; restored from __doc__
OpenCV的convertScaleAbs函数使用线性变换转换输入数组元素成8位无符号整型。函数原型:convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst src参数表示原数组。
dst参数表示输出数组 (深度为 8u)。
alpha参数表示比例因子。
beta参数表示原数组元素按比例缩放后添加的值。
(三)addWeighted
def addWeighted(src1, alpha, src2, beta, gamma, dst=None, dtype=None): # real signature unknown; restored from __doc__
OpenCV的addWeighted函数是计算两个数组的加权和。函数原型:addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst src1参数表示需要加权的第一个输入数组。 alpha参数表示第一个数组的权重。 src2参数表示第二个输入数组,它和第一个数组拥有相同的尺寸和通道数。 beta参数表示第二个数组的权重。 gamma参数表示一个加到权重总和上的标量值。 dst参数表示输出的数组,它和输入的两个数组拥有相同的尺寸和通道数。 dtype参数表示输出数组的可选深度。当两个输入数组具有相同的深度时,这个参数设置为-(默认值),即等同于src1.depth()。
二:拉普拉斯算子
def lapalian_demo(image):
dst = cv.Laplacian(image, cv.CV_32F)
lpls = cv.convertScaleAbs(dst)
cv.imshow("lapalian_demo", lpls)

补充:自己修改拉普拉斯算子
def lapalian_demo(image):
kernel = np.array([[,,],[,-,],[,,]]) #卷积核
dst = cv.filter2D(image,cv.CV_32F,kernel) #使用4卷积核算子去处理(是Laplacian默认)
lpls = cv.convertScaleAbs(dst)
cv.imshow("lapalian_demo", lpls)

kernel = np.array([[,,],[,-,],[,,]]) #使用8卷积核处理,增强了

相关知识补充
(一)Laplacian方法
def Laplacian(src, ddepth, dst=None, ksize=None, scale=None, delta=None, borderType=None): # real signature unknown; restored from __doc__
src参数表示输入需要处理的图像。 ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。 具体组合如下:
src.depth() = CV_8U, 取ddepth =-/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F)
src.depth() = CV_16U/CV_16S, 取ddepth =-/CV_32F/CV_64F
src.depth() = CV_32F, 取ddepth =-/CV_32F/CV_64F
src.depth() = CV_64F, 取ddepth = -/CV_64F
注:ddepth =-1时,代表输出图像与输入图像相同的深度。 dst参数表示输出与src相同大小和相同通道数的图像。 ksize参数表示用于计算二阶导数滤波器的孔径大小,大小必须是正数和奇数。,可以通过修改ksize大小来修改算子,ksize默认是1,为4卷积核,3是8卷积核,可以向上加,边缘梯度检测越明显 scale参数表示计算拉普拉斯算子值的比例因子,默认情况下没有伸缩系数。 delta参数表示一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。 borderType表示判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。
OpenCV---图像梯度的更多相关文章
- Python+OpenCV图像处理(十二)—— 图像梯度
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...
- OpenCV学习笔记(10)——图像梯度
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导. ...
- OpenCV常用基本处理函数(6)图像梯度
形态学转换 腐蚀 img = cv2.imread() kernel = np.ones((,),np.uint8) erosion = cv2.erode(img,kernel,iterations ...
- opencv:图像梯度
常见的图像梯度算子: 一阶导数算子: #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; ...
- opencv学习笔记(六)---图像梯度
图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...
- opencv python:图像梯度
一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x, ...
- opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测
opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测 这章讲了 sobel算子 scharr算子 Laplacion拉普拉斯算子 图像深度问题 Canny检测 图像梯度 sobel算子 ...
- OpenCV 图像清晰度评价(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上.这时候物体的成像比较清晰,图像细节信息丰富. 相 ...
- OpenCV4系列之图像梯度和边缘检测
在图像处理中,求解图像梯度是常用操作. Sobel算子 Calculates the first, second, third, or mixed image derivatives using an ...
- OpenCV 图像清晰度(相机自动对焦)
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上.这时候物体的成像比较清晰,图像细节信息丰富. 相 ...
随机推荐
- “Hello World!”团队召开的第六次会议
团队“Hello World!”团队召开的第六次会议. 博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.Todo List 六.会议照片 七.燃尽图 一.会议时间 2017年1 ...
- Ubuntu16.04下安装显卡驱动记录
安装环境及硬件信息 Ubuntu16.04 LTS 内核版本:4.4.0 显卡:Nvidia GeForce GTX 1060 安装过程 一.首先要下载好显卡驱动程序,官方网址:http://www. ...
- 团队展示(I know)
一.队员姓名与学号 姓名 学号 组长 陈家权 031502107 赖晓连 031502118 ★ 雷晶 031502119 林巧娜 031502125 庄加鑫 031502147 二.队名 I kno ...
- QQueue与QStack使用
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QQueue与QStack使用 本文地址:http://techieliang.com ...
- Beats Solo3 Wireless 无法链接 MacBook pro
Beats Solo3 Wireless 无法链接 MacBook pro 问题解决了,原来只要长按耳机的开关按钮就能被识别到了,貌似需要5秒钟不松手. https://bbs.feng.com/re ...
- display:table的几个妙用:垂直居中、浮动……
一.为什么不用table系表格元素? 目前,在大多数开发环境中,已经基本不用table元素来做网页布局了,取而代之的是div+css,那么为什么不用table系表格元素呢? 1.用DIV+CSS编写出 ...
- ZOJ3529_A Game Between Alice and Bob
题目的意思是给你若干个数字,两个游戏者轮流操作,每次可以将该数变为一个小于当前的一个约数,无法操作的游戏者fail. 和其他的博弈题目大同小异吧. 不同点有两个,逐一分析吧. 一.每次改变一个数只能改 ...
- luogu 1712 区间(线段树+尺取法)
题意:给出n个区间,求选择一些区间,使得一个点被覆盖的次数超过m次,最小的花费.花费指的是选择的区间中最大长度减去最小长度. 坐标值这么大,n比较小,显然需要离散化,需要一个技巧,把区间转化为半开半闭 ...
- Telnet 远程控制
Telnet 远程控制 一.挂第3张盘,进入RPMS中: 挂盘:mount /dev/cdrom /mnt/cdrom 路径:cd /mnt/cdrom/RedHat/RPMS 二.将rpm文件复制到 ...
- 洛谷 P2574 XOR的艺术
刚刚学了,线段树,一道线段树入门题试试水 下面是题面 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个 ...