Maze

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 3149    Accepted Submission(s): 1370
Special Judge

Problem Description
When wake up, lxhgww find himself in a huge maze.

The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.

Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).
What is the expect number of tunnels he go through before he find the exit?

 
Input
First line is an integer T (T ≤ 30), the number of test cases.

At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.

Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.

Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.

 
Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
 
Sample Input
3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60
 
Sample Output
Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522
 
Source
 

    给出一颗树,起始点为1号点,接下来可以走向任意一个与当前点连接着的点,每个点有ki%的概率被杀死和ei%的概率逃生(ki+ei<=100),被杀死后将返回1号点从新开始,问逃生成功的期望步数,如果不可能逃生成功输出impossible。注意到在每个点只有三种情况死亡,逃生或者是等概率的走向其他点,走向每个点的概率就是(1-ki-ei)/ni,ni为连接点个数。设f[i]表示在i点距离逃生成功的期望步数,我们有:

  f[i]=k[i]*f[1]+e[i]*0+( (1-k[i]-e[i])/ni )*( (f[fa[i]]+1) + SUM{ f[j]+1 } )

  注意到相关联的系数只有f[1],f[fa[i]]和常数C,令f[i]=A[i]*f[1]+B[i]*f[fa[i]]+C[i],代入f[j]得到

(1-SUM{ B[j] }*(1-ki-ei)/ni)*f[i]=(ki+SUM{A[j]}*(1-ki-ei)/ni)*f[1]+(1-ki-ei)/ni*f[fa[i]]+(1-ki-ei)/ni*(ni+SUM{C[j]} )

令Pi=(1-ki-ei)/ni

得到A[i]=(ki+Pi*SUM{A[j]})/(1-Pi*SUM{B[j]})

  B[i]=Pi/(1-Pi*SUM{B[j]})

  C[i]=Pi*(ni+SUM{C[j]})/(1-Pi*SUM{B[j]})

然后树形dp一下由叶子向父亲不断递推得到A[1]和C[1],答案就是C[1]/(1-A[1]),如果不可能逃生成功的话,1-A[1]应该趋近于零,特判一下。

  

 #include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
#include<stack>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<time.h>
#include<algorithm>
using namespace std;
#define mp make_pair
#define pb push_back
#define debug puts("debug")
#define LL long long
#define pii pair<int,int>
#define eps 1e-10
#define inf 0x3f3f3f3f const int NN=;
double A[NN],B[NN],C[NN],f[];
double E[NN],K[NN];
vector<int>g[NN];
void dfs(int u,int fa){
int ni=g[u].size(); //临接点个数
double _A=,_B=,_C=;
for(int i=;i<g[u].size();++i){
int v=g[u][i];
if(v==fa) continue;
dfs(v,u);
_A+=A[v],_B+=B[v],_C+=C[v];
}
double P=(1.00-K[u]-E[u])/ni;
A[u]=(K[u]+P*_A)/(1.00-P*_B);
B[u]=P/(1.00-P*_B); if(u==) B[u]=;
C[u]=P*(ni+_C)/(1.00-P*_B);
}
int main()
{
int t,i,j,k,n,m,u,v;
scanf("%d",&t);
for(int cas=;cas<=t;++cas){
scanf("%d",&n);
for(i=;i<=n;++i) g[i].clear();
for(i=;i<n;++i){
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
for(i=;i<=n;++i){
scanf("%lf%lf",K+i,E+i);
K[i]/=;
E[i]/=;
}
dfs(,-);
double ans=C[]/(1.00-A[]);
if(fabs(1.00-A[])<eps) printf("Case %d: impossible\n",cas);
else printf("Case %d: %.6f\n",cas,ans);
}
return ;
}

HDU-4035-概率dp-期望-公式化简的更多相关文章

  1. 2017 ICPC Asia Urumqi A.coins (概率DP + 期望)

    题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical c ...

  2. luogu P6835 概率DP 期望

    luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点 ...

  3. hdu 3853 概率dp

    题意:在一个R*C的迷宫里,一个人在最左上角,出口在右下角,在每个格子上,该人有几率向下,向右或者不动,求到出口的期望 现在对概率dp有了更清楚的认识了 设dp[i][j]表示(i,j)到(R,C)需 ...

  4. hdu 4035 可能性DP 成都网络游戏

    http://acm.hdu.edu.cn/showproblem.php?pid=4035 获得: 1.首先推断是不是树.事实上,所有的感觉身影,既看边数==算-1是不成立 2.有时候,我告诉孩子来 ...

  5. 概率dp+期望dp 题目列表(一)

    表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好 ...

  6. HDU 4599 概率DP

    先推出F(n)的公式: 设dp[i]为已经投出连续i个相同的点数平均还要都多少次才能到达目标状态. 则有递推式dp[i] = 1/6*(1+dp[i+1]) + 5/6*(1+dp[1]).考虑当前这 ...

  7. HDU 5001 概率DP || 记忆化搜索

    2014 ACM/ICPC Asia Regional Anshan Online 给N个点,M条边组成的图,每一步能够从一个点走到相邻任一点,概率同样,问D步后没走到过每一个点的概率 概率DP  測 ...

  8. HDU 4815 概率dp,背包

    Little Tiger vs. Deep Monkey Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K ( ...

  9. hdu 4050(概率dp)

    算是挺简单的一道概率dp了,如果做了前面的聪聪于可可的话,这题不需要什么预处理,直接概率dp就行了... #include <stdio.h> #include <stdlib.h& ...

  10. hdu 3853 LOOPS(概率 dp 期望)

    Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help ...

随机推荐

  1. Redis分布式队列解决文件并发的问题

    1.首先将捕获的异常写到Redis的队列中 public class MyExceptionAttribute : HandleErrorAttribute { public static IRedi ...

  2. htop 分析 进程对资源的消耗

    [root@d ~]# htop -hhtop 2.2.0 - (C) 2004-2018 Hisham MuhammadReleased under the GNU GPL. -C --no-col ...

  3. git-【五】远程仓库

    一.准备工作 在了解之前,先注册github[https://github.com/]账号,由于你的本地Git仓库和github仓库之间的传输是通过SSH加密的,所以需要一点设置: 第一步 创建SSH ...

  4. 格式工厂将图片变小,有500kb变为16kb

    1:打开格式工厂,选择图片栏>jpg 2:点击添加文件,选择要处理 的图片.点击输出配置,配置转换后 的大小(可手动调整),越小占用空间越少,点击确定 3: 主页面点击转换按钮,转换成功后,显示 ...

  5. Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)

    一:准备数据源     在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...

  6. [sql] 同库表(结构)的备份和sql聚合&navicat使用

    同库表的备份-赋值表结构和数据SQL语句 参考 有时候我们处理某个表时,需要先备份下这个表到当前这个库,然后再执行sql. 站在sql角度,就无需在mysqldump或者诸如导出sql的方式来备份了. ...

  7. Struct2小结:

    Action小结: 实现一个Action的最常用的方式:从ActionSupport继承: DMI动态方法调用,减少配置内容: 通配符 *_* ({1},{2})的使用更方便: 接收参数的方法(一般用 ...

  8. Session应用之验证码

    package com.aeolia.view; import java.awt.Color; import java.awt.Font; import java.awt.image.Buffered ...

  9. web前端基础补充

    1  布局和事件 布局效果如下(标题和内容都居中,两边留空白) 布局代码如下 <!DOCTYPE html> <html lang="en"> <he ...

  10. jmeter -xml日志格式中网络时间与服务器时间的区分

    在 LR 中是有一个“网页细分图”的,通过这个图,你可以比较容易的区分哪些请求的响应时间最长,如果响应时间过程,是消耗在server处理的时候,还是消耗在网络传输过程中——也就是所谓的 Server ...