题目大意:给出一个有向图,问你这个图中是否对于任意两点\(u,v\),都至少满足\(u\to v\)(\(u\)可到达\(v\),下同)或\(v\to u\)中的一个。

一看就是套路的图论题,我们先把边连起来。

考虑一个很基本的性质:在一个强连通分量的点两两可达

于是肯定先Tarjan缩一波点。然后我们得到了一个DAG

接下来就是考虑是否有两个点(当然是缩点之后的了)互不可达

这个可以直接跑一边拓扑排序。然后看一下是否在某个时刻有两个点的入度为零即可。

CODE

#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
const int N=1005;
struct edge
{
int to,next;
}e[N*6],ne[N*6];
int head[N],nhead[N],t,n,m,x,y,cnt,tot,sum,dfn[N],low[N],col[N],stack[N],ru[N],q[N],top;
bool vis[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void add(int x,int y)
{
e[++cnt].to=y; e[cnt].next=head[x]; head[x]=cnt;
}
inline void nadd(int x,int y)
{
ne[++cnt].to=y; ne[cnt].next=nhead[x]; nhead[x]=cnt;
}
inline void clear(void)
{
memset(head,-1,sizeof(head)); memset(e,-1,sizeof(e));
memset(nhead,-1,sizeof(nhead)); memset(ne,-1,sizeof(ne));
memset(dfn,0,sizeof(dfn)); memset(vis,0,sizeof(vis));
memset(col,0,sizeof(col)); memset(ru,0,sizeof(ru));
cnt=tot=sum=top=0;
}
inline int min(int a,int b)
{
return a<b?a:b;
}
inline void Tarjan(int now)
{
dfn[now]=low[now]=++tot; vis[now]=1; stack[++top]=now;
for (register int i=head[now];i!=-1;i=e[i].next)
if (!dfn[e[i].to]) Tarjan(e[i].to),low[now]=min(low[now],low[e[i].to]);
else if (vis[e[i].to]) low[now]=min(low[now],dfn[e[i].to]);
if (dfn[now]==low[now])
{
vis[now]=0; col[now]=++sum;
while (now!=stack[top])
{
vis[stack[top]]=0; col[stack[top--]]=sum;
} --top;
}
}
inline bool top_sort(void)
{
register int i,H=0,T=0;
for (i=1;i<=sum;++i)
if (!ru[i]) q[++T]=i;
while (H<T)
{
if (T-H>1) return 0;
int now=q[++H];
for (i=nhead[now];i!=-1;i=ne[i].next)
if (!(--ru[ne[i].to])) q[++T]=ne[i].to;
}
return 1;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j; read(t);
while (t--)
{
clear(); read(n); read(m);
for (i=1;i<=m;++i)
read(x),read(y),add(x,y);
for (i=1;i<=n;++i)
if (!dfn[i]) Tarjan(i);
for (cnt=0,i=1;i<=n;++i)
for (j=head[i];j!=-1;j=e[j].next)
if (col[i]!=col[e[j].to]) nadd(col[i],col[e[j].to]),++ru[col[e[j].to]];
if (top_sort()) puts("I love you my love and our love save us!"); else puts("Light my fire!");
}
return 0;
}

HDU 6165 FFF at Valentine的更多相关文章

  1. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. HDU 6165 FFF at Valentine(Tarjan缩点+拓扑排序)

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  4. HDU 6170 FFF at Valentine(强联通缩点+拓扑排序)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6165 题意:给你一个无环,无重边的有向图,问你任意两点,是否存在路径使得其中一点能到达另一点 解析:强 ...

  5. FFF at Valentine(强连通分量缩点+拓扑排序)

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  6. 【2017 Multi-University Training Contest - Team 9】FFF at Valentine

    [链接]http://acm.hdu.edu.cn/showproblem.php?pid=6165 [题意] 一张有向图,n个点,m条边,保证没有重边和自环.询问任意两个点能否满足任何一方能够到达另 ...

  7. hdu 6165

    虽然题解上说缩点然后判断入度就可以了,然后比赛的时候瞎暴力过了. #include <iostream> #include <cstring> #include <str ...

  8. Valentine's Day Round hdu 5176 The Experience of Love [好题 带权并查集 unsigned long long]

    传送门 The Experience of Love Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Ja ...

  9. HDU 6693 Valentine's Day (概率)

    2019 杭电多校 10 1003 题目链接:HDU 6693 比赛链接:2019 Multi-University Training Contest 10 Problem Description O ...

随机推荐

  1. loadrunner 脚本优化-关联设置

    脚本优化-关联设置 by:授客 QQ:1033553122 关联的原理 关联也属于一钟特殊的参数化.一般参数化的参数来源于一个文件.一个定义的table.通过sql写的一个结果集等,但关联所获得的参数 ...

  2. Python笔记(十四):操作excel openpyxl模块

    (一)  常遇到的情况 就我自己来说,常遇到的情况可能就下面几种: 读取excel整个sheet页的数据. 读取指定行.列的数据 往一个空白的excel文档写数据 往一个已经有数据的excel文档追加 ...

  3. python第五十四天--第十周作业

    SELECT版FTP:使用SELECT或SELECTORS模块实现并发简单版FTP允许多用户并发上传下载文件 必须使用select or selectors模块支持多并发,禁止使用多线程或多进程 RE ...

  4. 监控.net 网站 Glimpse

    使用Nuget 安装Glimpse 安装好后,config会默认添加几个节点 安装好之后 只需要浏览器输入  网站/Glimpse.axd 再次进入网站 就可以查看(ajax sql session ...

  5. webrtc 实时视频 .net websocket信令服务器

    这篇文章主要参考了 Webrtc WebSocket实现音视频通讯,非常感谢提供代码 前端部分完全是从这篇文章复制过来的,只是修改了webscket的url,还有加入了webrtc-adapterjs ...

  6. 第七章 鼠标(CONNECT)

    /* CONNECT.C -- Connect-the-Dots Mouse Demo Program (c) Charles Petzold,1998 */ #include <Windows ...

  7. Apache的配置详解 带图

    对Apache 的 Http.conf 各项配置详解 1.01 ServerRoot 配置 [ServerRoot "" 主要用于指定 Apache 的安装路径,此选项参数值在安装 ...

  8. 【PAT】B1061 判断题(15 分)

    简单逻辑题, #include<stdio.h> #include<algorithm> using namespace std; int main(){ int N,M;// ...

  9. c#中//注释和///注释的区别

    c#中//注释和///注释的区别 ///会被编译,//不会所以使用///会减慢编译的速度(但不会影响执行速度)///会在其它的人调用你的代码时提供智能感知 也是一种注释,但是这种注释主要有两种作用:1 ...

  10. ModelForm 中选择框的数据 以及 instance 参数

    ModelForm 中选择框的数据 print(list(self.fields['customer'].choices)) # [('', '---------'), (1, '张飞'), (2, ...