P2365 任务安排

batch:$n<=10000$

斜率优化入门题

$n^{3}$的dp轻松写出

但是枚举这个分成多少段很不方便

我们利用费用提前的思想,提前把这个烦人的$S$在后面的贡献先算掉

设$sv[i],st[i]$为费用、时间的前缀和

于是我们就可以得出一个$n^{2}$的方程

$f[i]=f[j]+(sv[i]-sv[j])*st[i]+(sv[n]-sv[j])*S$

拆开:$f[i]=f[j]+sv[i]*st[i]-sv[j]*st[i]+sv[n]*S-sv[j]*S$

移项:$f[j]=(S+st[i])*sv[j]+f[i]-sv[i]*st[i]-sv[n]*S$

再用$y=k*x+b$的套路带进去

$f[j]=(S+st[i])*sv[j]+f[i]-sv[i]*st[i]-sv[n]*S$

$y=k*x+b$

$y=f[j]$

$x=sv[j]$

$k=S+st[i]$(显然随着$i$增大而单调递增)

$b=f[i]-sv[i]*st[i]-sv[n]*S$

于是问题又转化成:找到一个使$b$最小的$(x,y)$

这样就能使$f[i]$最小

考虑到$k$单调递增,$x$也单调递增

我们就可以快乐地用单调队列维护下凸包辣

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef double db;
#define N 10005
db sv[N],st[N],f[N];
int n,S,L,R,h[N];
inline db X(int x){return sv[x];}
inline db Y(int x){return f[x];}
inline db K(int x,int y){return (Y(x)-Y(y))/(X(x)-X(y));}
int main(){
scanf("%d%d",&n,&S);
for(int i=;i<=n;++i){
scanf("%lf%lf",&st[i],&sv[i]);
st[i]+=st[i-]; sv[i]+=sv[i-];
}L=R=;
for(int i=;i<=n;++i){
while(L<R&&K(h[L],h[L+])<=S+st[i]) ++L;
f[i]=f[h[L]]+(sv[i]-sv[h[L]])*st[i]+(sv[n]-sv[h[L]])*S;
while(L<R&&K(h[R-],h[R])>K(h[R],i)) --R;
h[++R]=i;
}printf("%.0lf",f[n]);
return ;
}

P2365 任务安排 / [FJOI2019]batch(斜率优化dp)的更多相关文章

  1. 洛谷P2365 任务安排 [解法二 斜率优化]

    解法一:http://www.cnblogs.com/SilverNebula/p/5926253.html 解法二:斜率优化 在解法一中有这样的方程:dp[i]=min(dp[i],dp[j]+(s ...

  2. 洛谷P2365 任务安排(斜率优化dp)

    传送门 思路: 最朴素的dp式子很好考虑:设\(dp(i,j)\)表示前\(i\)个任务,共\(j\)批的最小代价. 那么转移方程就有: \[ dp(i,j)=min\{dp(k,j-1)+(sumT ...

  3. 2018.09.05 任务安排(斜率优化dp)

    描述 这道题目说的是,给出了n项必须按照顺序完成的任务,每项任务有它需要占用机器的时间和价值.现在我们有一台机器可以使用,它每次可以完成一批任务,完成这批任务所需的时间为一个启动机器的时间S加上所有任 ...

  4. POJ1180 Batch Scheduling -斜率优化DP

    题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...

  5. bzoj 2726 任务安排 斜率优化DP

    这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为 ...

  6. [SDOI2012]任务安排 - 斜率优化dp

    虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献 ...

  7. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

  8. 【学习笔记】动态规划—斜率优化DP(超详细)

    [学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(D ...

  9. HDU 3507 Print Article(斜率优化DP)

    题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上 ...

随机推荐

  1. 为IONIC开发的安卓apk签名

    首先进入\platforms\android目录生成一个keystore文件: keytool -genkey -alias mykey -keyalg RSA -validity 40000 -ke ...

  2. Mac Eclipse安装lombok

    Lombok是一个可以通过注解的形式可以帮助消除一些必须但是显得很臃肿的Java代码的工具,通过使用对应的注解,可以在进行编译源码的时候生成对应的方法,比如类属性的get/set/toString() ...

  3. POJ - 3279(枚举+暴力)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14297   Accepted: 5257 Descrip ...

  4. 使用stylus

    1. 首先确保  node + npm  环境一切正常. 2. 全局安装  stylus: 在命令行中:            npm i stylus@latest -g 3. 此时可以创建  .s ...

  5. js中 函数声明/函数表达式/匿名函数/箭头函数/立即执行函数

    函数声明: function add(a, b) { // ... } 1.顾名思义,声明一个函数, 用关键字 “function” 来告诉,这是一个函数. 2.任何地方,想用就可以拿过来使用 函数表 ...

  6. nvm的安装

    安装前可先卸载原来的node, npm, 安装成功后,可用nvm装node 一.用nvm-noinstall.zip安装 1.nvm-windows 下载 https://github.com/cor ...

  7. yarn卸载或增加节点

    yarn卸载或增加节点   卸载节点或者增加节点: 方式一:静态的增添删除:将集群关闭,修改配置文件(etc/hadoop/slaves),重新启动集群(很黄很暴力,不够人性化). 方式二:动态的增加 ...

  8. python全栈开发 * 29知识点汇总 * 180712

    29 正则表达式 re模块一.正则表达式官方定义:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符串”, 这个“规则字符串”用来表达对字 ...

  9. MongoDB分片集群原理、搭建及测试详解

    随着技术的发展,目前数据库系统对于海量数据的存储和高效访问海量数据要求越来越高,MongoDB分片机制就是为了解决海量数据的存储和高效海量数据访问而生. MongoDB分片集群由mongos路由进程( ...

  10. python-----函数参数类型

    #函数参数类型:1 位置参数 2 默认参数 3 关键字参数 4可变参数 包裹位置参数*args 包裹关键字参数 **kargs#参数位置顺序:先位置参数,默认参数,包裹位置,包裹关键字(定义和调用都应 ...