uva 242
242 - Stamps and Envelope Size
Time limit: 3.000 seconds
Stamps and Envelope Size |
Philatelists have collected stamps since long before postal workers were disgruntled. An excess of stamps may be bad news to a country's postal service, but good news to those that collect the excess stamps. The postal service works to minimize the number of stamps needed to provide seamless postage coverage. To this end you have been asked to write a program to assist the postal service.
Envelope size restricts the number of stamps that can be used on one envelope. For example, if 1 cent and 3 cent stamps are available and an envelope can accommodate 5 stamps, all postage from 1 to 13 cents can be ``covered":
Although five 3 cent stamps yields an envelope with 15 cents postage, it is not possible to cover an envelope with 14 cents of stamps using at most five 1 and 3 cent stamps. Since the postal service wants maximal coverage without gaps, the maximal coverage is 13 cents.
Input
The first line of each data set contains the integer S, representing the maximum of stamps that an envelope can accommodate. The second line contains the integer N, representing the number of sets of stamp denominations in the data set. Each of the next N lines contains a set of stamp denominations. The first integer on each line is the number of denominations in the set, followed by a list of stamp denominations, in order from smallest to largest, with each denomination separated from the others by one or more spaces. There will be at most S denominations on each of the N lines. The maximum value of S is 10, the largest stamp denomination is 100, the maximum value of N is 10.
The input is terminated by a data set beginning with zero (S is zero).
Output
Output one line for each data set giving the maximal no-gap coverage followed by the stamp denominations that yield that coverage in the following format:
max coverage = <value> : <denominations>
If more than one set of denominations in a set yields the same maximal no-gap coverage, the set with the fewest number of denominations should be printed (this saves on stamp printing costs). If two sets with the same number of denominations yield the same maximal no-gap coverage, then the set with the lower maximum stamp denomination should be printed. For example, if five stamps fit on an envelope, then stamp sets of 1, 4, 12, 21 and 1, 5, 12, 28 both yield maximal no-gap coverage of 71 cents. The first set would be printed because both sets have the same number of denominations but the first set's largest denomination (21) is lower than that of the second set (28). If multiple sets in a sequence yield the same maximal no-gap coverage, have the same number of denominations, and have equal largest denominations, then print the set with the lewer second-maximum stamp denomination, and so on.
Sample Input
5
2
4 1 4 12 21
4 1 5 12 28
10
2
5 1 7 16 31 88
5 1 15 52 67 99
6
2
3 1 5 8
4 1 5 7 8
0
Sample Output
max coverage = 71 : 1 4 12 21 max coverage = 409 : 1 7 16 31 88 max coverage = 48 : 1 5 7 8
记忆化搜索
一开始读错题了,以至于想得非常复杂,后来终于读明白了,比较简单的记搜。
d[i][j]表示用i张邮票凑成邮资j。
注意输出的格式。反正我是pe了。
#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 1001
int d[][MAXN];
int s1[], s2[];
int s, n; int Judge()
{
for(int i = s1[]; i > ; i--)
if(s1[i] < s2[i]) return true;
else if(s1[i] < s2[i]) ;
else return false;
return false;
} int dp(int p, int q)
{
if(p > s) return ;
if(d[p][q] != -) return d[p][q];
for(int i = s1[]; i > ; i--)
dp(p + , q + s1[i]);
d[p][q] = ;
} int get_max()
{
int flag;
for(int i = ; ; i++)
{
flag = ;
for(int j = ; j <= s; j++)
if(d[j][i] == ) flag = ;
if(!flag) return i - ;
}
} void put()
{
repu(i, , s2[] + ) printf("%d ", s2[i]);
puts("");
}
int main()
{
while(~scanf("%d", &s) && s)
{
scanf("%d",&n);
int maxn = ;
repu(i, , n)
{
_cle(d, -);
scanf("%d", &s1[]);
repu(j, , s1[] + ) scanf("%d", &s1[j]);
dp(, );
int t = get_max();
if(i == )
{
memcpy(s2, s1, sizeof(s1));
maxn = t;
}
else if(maxn == t)
{
if(s1[] < s2[] || (s1[] == s2[] && Judge()))
{
memcpy(s2, s1, sizeof(s1));
}
}
else if(maxn < t)
{
memcpy(s2, s1, sizeof(s1));
maxn = t;
}
}
printf("max coverage = %3d :", maxn);
repu(i, , s2[] + ) printf(" %2d", s2[i]);
puts("");
}
return ;
}
uva 242的更多相关文章
- Uva 242 邮票和信封
题目链接:https://vjudge.net/contest/146179#problem/D 题意: 信封上最多贴S张邮票.有N个邮票集合,每个集合有不同的面值.问哪个集合的最大连续邮资最大,输出 ...
- UVA - 242 线性DP
题意:给定多种邮票的组合,邮票最多只能用S张,这些邮票能组成许多不同面额,问最大连续面额的长度是多少,如果有多个组合输出组合中邮票数量最少的,如果仍有长度一致的,输出邮票从大到小排序后字典序最大的那个 ...
- 习题9-5 UVA 242
Stamps and Enovelope Size 题意: 给你最多贴S张邮票.有N个邮票集合,每个集合有不同的面值.问哪个集合的最大连续邮资最大,输出最大连续邮资和集合元素. 如果不止一个集合结果相 ...
- UVa 242 邮票和信封(完全背包)
https://vjudge.net/problem/UVA-242 题意: 输入s(每个信封能粘贴的最多邮票数量)和若干邮票组合,选出最大连续邮资最大的一个组合(最大连续邮资也就是用s张以内的邮票来 ...
- UVA - 242 Stamps and Envelope Size (完全背包+bitset)
题意:给你一些邮票面值的集合,让你选择其中一个集合,使得“能用不超过n枚集合中的邮票凑成的面值集合S中从1开始的最大连续面值”(即mex(S)-1)最大.如果有多解,输出集合大小最小的一个:如果仍有多 ...
- UVa 242 Stamps and Envelope Size (无限背包,DP)
题意:信封上最多贴S张邮票.有N个邮票集合,每个集合有不同的面值.问哪个集合的最大连续邮资最 大,输出最大连续邮资和集合元素. 最大连续邮资是用S张以内邮票面值凑1,2,3...到n+1凑不出来了,最 ...
- Stamps ans Envelope Sive UVA - 242
( ||{集合x}表示x中元素1||x中元素2||...||x的最后一个元素||(a,b)表示a||b) ans[i][j][k]表示考虑前i种邮票时取j个邮票能否得到面值kans[i][j][k]= ...
- 【Uva 242】Stamps and Envelope Size
[Link]: [Description] 给你n个集合; 每个集合都包含一些不同面额的邮票; (每种邮票都当做有无限张) 然后给你一封信上最多能贴的邮票张数S; 问你,哪一个集合的邮票; 能够贴出来 ...
- appium日志
2020-10-02 00:44:10:672 [Appium] Welcome to Appium v1.16.0 2020-10-02 00:44:10:673 [Appium] Non-defa ...
随机推荐
- 字符串处理:ABAP中的正则表达式
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- 使用一个封装的json删除方法
<!-- 前台js代码:其实现的目的:利用异步的封装方法实现增删改操作!--> <script type="text/javascript"> functi ...
- IQ一个人的智力和对科学知识的理解掌握程度。 EQ对环境和个人情绪的掌控和对团队关系的运作能力。 AQ挫折商 一个人面对困境时减除自己的压力、渡过难关的能力。
IQ: Intelligence Quotient 智商 一个人的智力和对科学知识的理解掌握程度. EQ: Emotional Quotient 情商 一个人对环境和个人情绪的掌控和对团队关系的运作能 ...
- Redis基础知识之————使用技巧(持续更新中.....)
一.key 设计技巧 把表名转换为key前缀 如, tag: 第2段放置用于区分区key的字段--对应mysql中的主键的列名,如userid 第3段放置主键值,如2,3,4...., a , b , ...
- AFNetworking请求中含有中文时程序崩溃
出现error: Assertion failure in -[AFHTTPRequestSerializer requestWithMethod:URLString:parameters:error ...
- linux之稀疏文件
1. Sparse 文件是并不占用磁盘存储空间. 2. rm 某文件后, 文件占用的磁盘空间并不是立即释放, 而是其句柄没有被任意一个进程引用时才回收. 3. ls 的结果是 apparent siz ...
- Android ViewFlipper的使用分析
[ViewFlipper]——基础 1.ViewPager 和ViewFliping的区别: 最显著的区别就是ViewPager在滑动的时候内部的View默认就能够跟随手指滑动,而 ViewFlipi ...
- 最大的LeftMax与rightMax之差绝对值
这两天去 牛客网 混了下,遇到的几道题都很有意思,尤其是今晚这道,比赛时不会做,后来看了别人的代码才突然想通的,题目链接: 最大的LeftMax与rightMax之差绝对值,大意是: 想了一晚都没想出 ...
- 配置tomcat,java运行环境
1.下载JDK,安装 官网下载地址:http://java.sun.com/javase/downloads/index.jsp 下载后,安装,选择你想把JDK安装的目录: 比如:JDK安装目录:E: ...
- AlphaGo实现原理
AlphaGo已经打败了李世石9段,如果你也懂它背后的原理,或许某一天你也可以开发出一款AI来打败dota或者LOL的世界冠军. Mastering the game of Go with deep ...