242 - Stamps and Envelope Size

Time limit: 3.000 seconds

 Stamps and Envelope Size 

Philatelists have collected stamps since long before postal workers were disgruntled. An excess of stamps may be bad news to a country's postal service, but good news to those that collect the excess stamps. The postal service works to minimize the number of stamps needed to provide seamless postage coverage. To this end you have been asked to write a program to assist the postal service.

Envelope size restricts the number of stamps that can be used on one envelope. For example, if 1 cent and 3 cent stamps are available and an envelope can accommodate 5 stamps, all postage from 1 to 13 cents can be ``covered":

Although five 3 cent stamps yields an envelope with 15 cents postage, it is not possible to cover an envelope with 14 cents of stamps using at most five 1 and 3 cent stamps. Since the postal service wants maximal coverage without gaps, the maximal coverage is 13 cents.

Input

The first line of each data set contains the integer S, representing the maximum of stamps that an envelope can accommodate. The second line contains the integer N, representing the number of sets of stamp denominations in the data set. Each of the next N lines contains a set of stamp denominations. The first integer on each line is the number of denominations in the set, followed by a list of stamp denominations, in order from smallest to largest, with each denomination separated from the others by one or more spaces. There will be at most S denominations on each of the N lines. The maximum value of S is 10, the largest stamp denomination is 100, the maximum value of N is 10.

The input is terminated by a data set beginning with zero (S is zero).

Output

Output one line for each data set giving the maximal no-gap coverage followed by the stamp denominations that yield that coverage in the following format:

max coverage = <value> : <denominations>

If more than one set of denominations in a set yields the same maximal no-gap coverage, the set with the fewest number of denominations should be printed (this saves on stamp printing costs). If two sets with the same number of denominations yield the same maximal no-gap coverage, then the set with the lower maximum stamp denomination should be printed. For example, if five stamps fit on an envelope, then stamp sets of 1, 4, 12, 21 and 1, 5, 12, 28 both yield maximal no-gap coverage of 71 cents. The first set would be printed because both sets have the same number of denominations but the first set's largest denomination (21) is lower than that of the second set (28). If multiple sets in a sequence yield the same maximal no-gap coverage, have the same number of denominations, and have equal largest denominations, then print the set with the lewer second-maximum stamp denomination, and so on.

Sample Input

5
2
4 1 4 12 21
4 1 5 12 28
10
2
5 1 7 16 31 88
5 1 15 52 67 99
6
2
3 1 5 8
4 1 5 7 8
0

Sample Output

max coverage = 71 : 1 4 12 21 max coverage = 409 : 1 7 16 31 88 max coverage = 48 : 1 5 7 8

记忆化搜索
一开始读错题了,以至于想得非常复杂,后来终于读明白了,比较简单的记搜。
d[i][j]表示用i张邮票凑成邮资j。
注意输出的格式。反正我是pe了。

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 1001
int d[][MAXN];
int s1[], s2[];
int s, n; int Judge()
{
for(int i = s1[]; i > ; i--)
if(s1[i] < s2[i]) return true;
else if(s1[i] < s2[i]) ;
else return false;
return false;
} int dp(int p, int q)
{
if(p > s) return ;
if(d[p][q] != -) return d[p][q];
for(int i = s1[]; i > ; i--)
dp(p + , q + s1[i]);
d[p][q] = ;
} int get_max()
{
int flag;
for(int i = ; ; i++)
{
flag = ;
for(int j = ; j <= s; j++)
if(d[j][i] == ) flag = ;
if(!flag) return i - ;
}
} void put()
{
repu(i, , s2[] + ) printf("%d ", s2[i]);
puts("");
}
int main()
{
while(~scanf("%d", &s) && s)
{
scanf("%d",&n);
int maxn = ;
repu(i, , n)
{
_cle(d, -);
scanf("%d", &s1[]);
repu(j, , s1[] + ) scanf("%d", &s1[j]);
dp(, );
int t = get_max();
if(i == )
{
memcpy(s2, s1, sizeof(s1));
maxn = t;
}
else if(maxn == t)
{
if(s1[] < s2[] || (s1[] == s2[] && Judge()))
{
memcpy(s2, s1, sizeof(s1));
}
}
else if(maxn < t)
{
memcpy(s2, s1, sizeof(s1));
maxn = t;
}
}
printf("max coverage = %3d :", maxn);
repu(i, , s2[] + ) printf(" %2d", s2[i]);
puts("");
}
return ;
}

uva 242的更多相关文章

  1. Uva 242 邮票和信封

    题目链接:https://vjudge.net/contest/146179#problem/D 题意: 信封上最多贴S张邮票.有N个邮票集合,每个集合有不同的面值.问哪个集合的最大连续邮资最大,输出 ...

  2. UVA - 242 线性DP

    题意:给定多种邮票的组合,邮票最多只能用S张,这些邮票能组成许多不同面额,问最大连续面额的长度是多少,如果有多个组合输出组合中邮票数量最少的,如果仍有长度一致的,输出邮票从大到小排序后字典序最大的那个 ...

  3. 习题9-5 UVA 242

    Stamps and Enovelope Size 题意: 给你最多贴S张邮票.有N个邮票集合,每个集合有不同的面值.问哪个集合的最大连续邮资最大,输出最大连续邮资和集合元素. 如果不止一个集合结果相 ...

  4. UVa 242 邮票和信封(完全背包)

    https://vjudge.net/problem/UVA-242 题意: 输入s(每个信封能粘贴的最多邮票数量)和若干邮票组合,选出最大连续邮资最大的一个组合(最大连续邮资也就是用s张以内的邮票来 ...

  5. UVA - 242 Stamps and Envelope Size (完全背包+bitset)

    题意:给你一些邮票面值的集合,让你选择其中一个集合,使得“能用不超过n枚集合中的邮票凑成的面值集合S中从1开始的最大连续面值”(即mex(S)-1)最大.如果有多解,输出集合大小最小的一个:如果仍有多 ...

  6. UVa 242 Stamps and Envelope Size (无限背包,DP)

    题意:信封上最多贴S张邮票.有N个邮票集合,每个集合有不同的面值.问哪个集合的最大连续邮资最 大,输出最大连续邮资和集合元素. 最大连续邮资是用S张以内邮票面值凑1,2,3...到n+1凑不出来了,最 ...

  7. Stamps ans Envelope Sive UVA - 242

    ( ||{集合x}表示x中元素1||x中元素2||...||x的最后一个元素||(a,b)表示a||b) ans[i][j][k]表示考虑前i种邮票时取j个邮票能否得到面值kans[i][j][k]= ...

  8. 【Uva 242】Stamps and Envelope Size

    [Link]: [Description] 给你n个集合; 每个集合都包含一些不同面额的邮票; (每种邮票都当做有无限张) 然后给你一封信上最多能贴的邮票张数S; 问你,哪一个集合的邮票; 能够贴出来 ...

  9. appium日志

    2020-10-02 00:44:10:672 [Appium] Welcome to Appium v1.16.0 2020-10-02 00:44:10:673 [Appium] Non-defa ...

随机推荐

  1. python strip()函数

    转发:jihite-博客园-python strip()函数 函数原型 声明:s为字符串,rm为要删除的字符序列 s.strip(rm)        删除s字符串中开头.结尾处,位于 rm删除序列的 ...

  2. FormsAuthentication.HashPasswordForStoringInConfigFile 方法 之研究

    摘自:http://time-is-life.cnblogs.com/articles/322523.html 给定标识哈希类型的密码和字符串,该例程产生一个适合存储在配置文件中的哈希密码. [C#] ...

  3. XAF实现运行时填加验证规则并保存到数据库中

    有几种方法可以用来声明一个验证规则.最常用的方法是使用对应的Attribute来定义.详见这里.验证模块还允许您通过在业务类实现 IRuleSource 接口定义自定义的验证规则的来源. IRuleS ...

  4. [转]使用onclick跳转到其他页面/跳转到指定url

    如果是本页显示可以直接用location,方法如下: ①onclick="javascript:window.location.href='URL'" ②onclick=" ...

  5. css position 绝对定位和相对定位

    position:absolute这个是绝对定位:是相对于浏览器的定位.比如:position:absolute:left:20px;top:80px; 这个容器始终位于距离浏览器左20px,距离浏览 ...

  6. 浅谈Android手机木马手工查杀

    这篇文章主要是浅谈,所以会从简单方面开始讲起. 关于手机木马查杀,有些人会说安装手机杀毒软件不就解决了吗? 其实不然.因为手机和PC不一样,手机反木马技术没有PC端那么强. 就算你把目前市面上的所有手 ...

  7. C++大数类模板

    友情提示:使用该模板的注意了,在大数减法里有一个小错误,导致减法可能会出错 // 原来的写法,将t1.len错写成了len ] == && t1.len > ) { t1.len ...

  8. iOS - OC 术语表

    1.术语表

  9. [转载] goroutine背后的系统知识

    原文: http://www.sizeofvoid.net/goroutine-under-the-hood/ 文章写的非常好, 对内部原理解释的非常清楚, 是我喜欢的风格, 感谢作者的精彩文章. = ...

  10. CSS3_概述、发展史、模块介绍、与浏览器之间的关系

    一.CSS3概述和CSS3的发展史: 1.css3概述: CSS3是CSS2的升级版本,3只是版本号,它在CSS2.1的基础上增加了很多强大的新功能.    目前主流浏览器chrome.safari. ...