问题:可能逆元不存在吗?

题解:

Gcd(a,b)==Gcd(b,a-b);

从数据范围可以看出应该求M!的欧拉函数;

然后通过Gcd转化过去

一开始没想到

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long Lint;
const int maxT=20000;
const int maxn=10000009;
int T,r;
int mn=0,mm=0; int inn[maxT];
int inm[maxT];
Lint fac[maxn]; int vis[maxn]= {0};
int prime[maxn],cntprime=0;
int Lineshake() {
vis[1]=1;
for(int i=2; i<=mm; ++i) {
if(!vis[i]) {
prime[++cntprime]=i;
}
for(int j=1; (j<=cntprime)&&(i*prime[j]<=mm); ++j) {
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
}
}
} Lint ksm(Lint a,Lint p) {
Lint ret=1;
for(; p; p>>=1,a=a*a%r) {
if(p&1)ret=ret*a%r;
}
return ret;
}
Lint inv(Lint x) {
return ksm(x,r-2);
} Lint phi[maxn]; int main() {
scanf("%d%d",&T,&r);
for(int i=1; i<=T; ++i) {
scanf("%d%d",&inn[i],&inm[i]);
mn=max(mn,inn[i]);
mm=max(mm,inm[i]);
} fac[1]=1;
for(int i=2; i<=mn; ++i)fac[i]=fac[i-1]*i%r;
Lineshake(); phi[1]=1;
for(int i=2; i<=mm; ++i) {
if(!vis[i]) {
phi[i]=phi[i-1]*(i-1)%r*inv(i)%r;
} else {
phi[i]=phi[i-1];
}
} for(int i=1; i<=T; ++i) {
printf("%lld\n",fac[inn[i]]*phi[inm[i]]%r);
}
return 0;
}

  

BZOJ:2186: [Sdoi2008]沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】

    题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...

  4. [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...

  5. bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...

  6. BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】

    题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论    对于两个正整数和,如果是的倍数,那么中与互素的数的个数为      本结论是很好证明的,因为中与互素的个数为,又知道, ...

  7. bzoj 2186: [Sdoi2008]沙拉公主的困惑

    #include<cstdio> #include<iostream> #define ll long long #define N 10000009 using namesp ...

  8. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

  9. bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数

    n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...

  10. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

随机推荐

  1. 写的一个轻量级javascript框架的设计模式

    公司一直使用jQuery框架,一些小的项目还是觉得jQuery框架太过于强大了,于是自己周末有空琢磨着写个自己的框架.谈到js的设计模式,不得不说说js的类继承机制,javascript不同于PHP可 ...

  2. 算法竞赛入门经典——读书笔记day1

    1-1:整数值用%d输出,实数用%f输出. 1-2:整数/整数=整数,浮点数/浮点数=浮点数. 1-3:scanf中的占位符和变量的数据类型应一一对应,且每个变量前需要加&符号. 1-4:在算 ...

  3. liunx命令用到的

    su:切换成root用户 sudo su:普通用户申请root权限 ping命令可以检查linux是否联网 ping www.baidu.com 如图就是联网了 结束ping包括其他linux的指令 ...

  4. STM32学习笔记:创建工程模板

    STM32作为一类高级单片机,在应用中不容小觑. 所以本人从2018年1月1日开始对于STM32系列单片机的学习. 本人所持的型号为:STM32F429ZI-DISCOVERY,M4内核,封装类型为: ...

  5. Product of Polynomials

    题意:多项式相乘,合并同类项后输出每一项的系数. 题目链接:https://www.patest.cn/contests/pat-a-practise/1009 分析:注意合并后系数为0,这一项就不存 ...

  6. day01-Python运维开发基础

    还是用思维导图来一遍,印象更深!

  7. other#docker

    阿里云docker镜像加速地址:https://cr.console.aliyun.com/#/accelerator docker 安装: yum install -y yum-utils devi ...

  8. android中的简单animation(三)accelerate(加速),decelerate(减速),anticipate,overshoot,bounce

    animation_3.xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout x ...

  9. vue的MVVM

    Vue的相关知识有 字符串模板 MVVM 虚拟dom和domdiff,查看下一篇笔记 字符串模板 function render(template, data) { const reg = /\{\{ ...

  10. Spring的AOP开发(基于AspectJ的XML方式)

    Spring的AOP的简介: AOP思想最早是由AOP联盟组织提出的.Spring是使用这种思想最好的框架 Spring的AOP有自己实现的方式(非常繁琐). Aspect是一个AOP的框架, Spr ...