问题:可能逆元不存在吗?

题解:

Gcd(a,b)==Gcd(b,a-b);

从数据范围可以看出应该求M!的欧拉函数;

然后通过Gcd转化过去

一开始没想到

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long Lint;
const int maxT=20000;
const int maxn=10000009;
int T,r;
int mn=0,mm=0; int inn[maxT];
int inm[maxT];
Lint fac[maxn]; int vis[maxn]= {0};
int prime[maxn],cntprime=0;
int Lineshake() {
vis[1]=1;
for(int i=2; i<=mm; ++i) {
if(!vis[i]) {
prime[++cntprime]=i;
}
for(int j=1; (j<=cntprime)&&(i*prime[j]<=mm); ++j) {
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
}
}
} Lint ksm(Lint a,Lint p) {
Lint ret=1;
for(; p; p>>=1,a=a*a%r) {
if(p&1)ret=ret*a%r;
}
return ret;
}
Lint inv(Lint x) {
return ksm(x,r-2);
} Lint phi[maxn]; int main() {
scanf("%d%d",&T,&r);
for(int i=1; i<=T; ++i) {
scanf("%d%d",&inn[i],&inm[i]);
mn=max(mn,inn[i]);
mm=max(mm,inm[i]);
} fac[1]=1;
for(int i=2; i<=mn; ++i)fac[i]=fac[i-1]*i%r;
Lineshake(); phi[1]=1;
for(int i=2; i<=mm; ++i) {
if(!vis[i]) {
phi[i]=phi[i-1]*(i-1)%r*inv(i)%r;
} else {
phi[i]=phi[i-1];
}
} for(int i=1; i<=T; ++i) {
printf("%lld\n",fac[inn[i]]*phi[inm[i]]%r);
}
return 0;
}

  

BZOJ:2186: [Sdoi2008]沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】

    题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...

  4. [BZOJ 2186][Sdoi2008]沙拉公主的困惑(欧拉函数)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2186 分析: 就是要求1~n!中与m!互质的数的个数 首先m!以内的就是φ(m!) 关 ...

  5. bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...

  6. BZOJ 2186 [Sdoi2008]沙拉公主的困惑 【逆元】

    题意:求中互质的数的个数,其中. 分析:因为,所以,我们很容易知道如下结论    对于两个正整数和,如果是的倍数,那么中与互素的数的个数为      本结论是很好证明的,因为中与互素的个数为,又知道, ...

  7. bzoj 2186: [Sdoi2008]沙拉公主的困惑

    #include<cstdio> #include<iostream> #define ll long long #define N 10000009 using namesp ...

  8. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

  9. bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数

    n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...

  10. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

随机推荐

  1. 树莓派4b烧录系统

    树莓派4b烧录系统 树莓派 型号:树莓派4b 系统:raspbian-buster-full 1.先用SDFormatterv4格式化sd卡 2.用win32diskimager-v0.9-binar ...

  2. Python—网络通信编程之tcp通信编程

    服务端代码 import socket # 1.创建流式套接字实例 # server = socket.socket() server = socket.socket(socket.AF_INET, ...

  3. 统计学习方法——KD树最近邻搜索

    李航老师书上的的算法说明没怎么看懂,看了网上的博客,悟出一套循环(建立好KD树以后的最近邻搜索),我想应该是这样的(例子是李航<统计学习算法>第三章56页:例3.3): 步骤 结点查询标记 ...

  4. Java 变参函数的实现

      Java的变参函数实现实际上参数是一个数组,其简单用法如下 public class variableParamTest { private static void variableParam(O ...

  5. Paper代写:别让段落结尾拉低你的分数

    为了达到paper写作格式和字数要求,学生往往会在段末做一件事:总结.都不算是一个很长的段落.本来就写不了多少论证的内容,我们还强制加一个总结句,不仅占用了我们论证的篇幅,而且显得多余(段首的主题句已 ...

  6. java 根据传入的时间获取当前月的第一天的0点0分0秒和最后一天的23点59分59秒

    /** * 获取指定日期所在月份开始的时间 * lkeji * @return */ public static String getMonthBegin(String specifiedDay) { ...

  7. JavaScript 文件延迟和异步加载

    JavaScript 文件延迟和异步加载 -般情况下,在文档的 <head> 标签中包含 JavaScript 脚本,或者导入的 JavaScript 文件. 这意味着必须等到全部 Jav ...

  8. Python下opencv使用笔记(图像频域滤波与傅里叶变换)

    Python下opencv使用笔记(图像频域滤波与傅里叶变换) 转载一只程序喵 最后发布于2018-04-06 19:07:26 阅读数 1654  收藏 展开 本文转载自  https://blog ...

  9. VUE - vuex state的使用

    1,安装 进入项目目录,执行 vue add vuex 命令 2,会在src的目录下新增store文件夹 3,打开store文件夹下的index.js  ,  给 state 设定一些数据 impor ...

  10. 字符设备驱动之LED驱动

    实现 ①编写驱动框架 ②编写硬件实现代码 (在Linux系统下操作硬件,需要操作虚拟地址,因此需要先把物理地址转换为虚拟地址 ioremap()) 如何实现单个灯的操作: 实现方法之一--操作次设备号 ...