深度强化学习(DRL)专栏开篇
2015年,DeepMind团队在Nature杂志上发表了一篇文章名为“Human-level control through deep reinforcement learning”的论文,在这篇论文中,他们提出了DQN算法的改进版本,他们将改进的算法应用到49种不同的Atari 2600游戏中,并且其中的一半实现了超过人类玩家的性能。现在,深度强化学习已经成为了人工智能(Artificial Intelligence,简称AI)领域最前沿的研究方向,在各个应用领域也是备受推崇,如同David Silver认为的那样,未来的人工智能一定是深度学习(Deep Learning)和强化学习(Reinforcement Learning)的结合。
基于此磐小仙会给大家带来关于深度强化学习的一个专栏。这个专栏主要针对想要学习深度强化学习相关领域研究人员与相关从业者。通过专栏的学习,快速带你弄懂深度强化学习原理,与上手深度强化学习实战!
1. 专栏介绍
除了Facebook之外,Twitter、GMU和Salesforce等机构
近年来,强化学习的应用和研究越来越受到大家的关注,强化学习和深度学习一样,都是机器学习研究的重要分支,纵观强化学习的发展,它有着自己的一套理论和方法,尤其将深度学习和强化学习结合之后,其内容则被更加丰富了。虽然目前强化学习已经逐渐应用于人工智能、任务调度以及工业控制等领域,并展现出了其潜在的巨大应用价值,但是由于现实环境的复杂性,导致仍然有很多问题需要解决。
本专栏是实战类的,所以不便花大量的篇幅去介绍强化学习的理论知识,在本专栏的前两节内容里,我们会简单的介绍一下强化学习的基础知识;在第三节和第四节内容里,我们会学习一些最基础的强化学习算法,帮助读者快速入门;第五节内容是三个强化学习算法的项目实战,通过几个小的项目帮助读者加深对算法的理解;第六节内容里会结合实战项目介绍几个常见的深度强化学习算法,实现这些深度强化学习算法是以前面所有内容为基础的;另外,如果读者有兴趣深入研究强化学习和深度强化学习的知识,推荐读者去学习本专栏小结里给出的推荐学习资料。
2. 专栏目录
1. 引言
专栏知识结构
从AlphaGo看深度强化学习
2. 强化学习基础知识
强化学习问题
马尔科夫决策过程
最优价值函数和贝尔曼方程
3. 有模型的强化学习方法
价值迭代
策略迭代
4. 无模型的强化学习方法
蒙特卡洛方法
时序差分学习
值函数近似
策略搜索
5. 实战强化学习算法
Q-learning 算法
Monte Carlo Policy Gradient 算法
Actor Critic 算法
6. 深度强化学习算法
Deep Q-Networks(DQN)
Deep Deterministic Policy Gradient(DDPG)
7. 专栏小结
3. 更新计划
更新频率:一周一篇
开始时间:下周开始
4. 学习交流
为了方便大家更好地与作者进行沟通交流,为此磐小仙针对这个专栏成立了QQ和微信读者交流群,同时邀请了专栏的作者小猴锅坐镇交流群,大家想近距离与作者沟通,都可以来加入。
加入方式:扫描下方微信群二维码,或者QQ群二维码,即可加入交流群。
扫描上方二维码,加入微信交流群
扫描上方二维码,加入QQ交流群
深度强化学习(DRL)专栏开篇的更多相关文章
- 深度学习-深度强化学习(DRL)-Policy Gradient与PPO笔记
Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅 ...
- 深度强化学习(DRL)专栏(一)
目录: 1. 引言 专栏知识结构 从AlphaGo看深度强化学习 2. 强化学习基础知识 强化学习问题 马尔科夫决策过程 最优价值函数和贝尔曼方程 3. 有模型的强化学习方法 价值迭代 策略迭代 4. ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- 深度强化学习——连续动作控制DDPG、NAF
一.存在的问题 DQN是一个面向离散控制的算法,即输出的动作是离散的.对应到Atari 游戏中,只需要几个离散的键盘或手柄按键进行控制. 然而在实际中,控制问题则是连续的,高维的,比如一个具有6个关节 ...
- 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
- 5G网络的深度强化学习:联合波束成形,功率控制和干扰协调
摘要:第五代无线通信(5G)支持大幅增加流量和数据速率,并提高语音呼叫的可靠性.在5G无线网络中共同优化波束成形,功率控制和干扰协调以增强最终用户的通信性能是一项重大挑战.在本文中,我们制定波束形成, ...
- 深度强化学习中稀疏奖励问题Sparse Reward
Sparse Reward 推荐资料 <深度强化学习中稀疏奖励问题研究综述>1 李宏毅深度强化学习Sparse Reward4 强化学习算法在被引入深度神经网络后,对大量样本的需求更加 ...
- 【资料总结】| Deep Reinforcement Learning 深度强化学习
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...
- 深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO)
深度学习课程笔记(十四)深度强化学习 --- Proximal Policy Optimization (PPO) 2018-07-17 16:54:51 Reference: https://b ...
随机推荐
- HTML标签学习总结(2)
点我:HTLM标签学习总结(1) 11. 在网页制作过程过中,可以把一些独立的逻辑部分划分出来,放在一个<div>标签中,这个<div>标签的作用就相当于一个容器. 语法: & ...
- 3——PHP 简单运算符的使用
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- xshell6使用的命令
我们进入Xshell的界面之后连接上Linux服务器 常用命令: (1)命令ls——列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的“隐藏”文件 ls a* 列出当前目录下 ...
- 使用thymeleaf模板实现博客评论的异步刷新
使用thymeleaf模板实现博客评论的异步刷新 最简单的一个要求:用户可以在博客下面进行评论,然后评论后点击提交后直接上传到数据库,并且局部刷新 这是前端页面的展示,使用的semanticUI进行构 ...
- SQL语句中in 与 exists的区别
SQL语句中in 与 exists的区别 SQL中EXISTS检查是否有结果,判断是否有记录,返回的是一个布尔型(true/false); IN是对结果值进行比较,判断一个字段是否存在于几个值的范围中 ...
- d3学习day3 --y轴添加文本标签
y轴添加文本标签 g.append("g") .call(y_axis) .append("text") .text("price($)") ...
- notepad++ 字符处理: 字符前后删除 或 删除未包含字符串的行
字符串前后删除 删除str之后的所有字符用,打开替换(Ctrl+H) :str.*$ 删除str之前的所有字符用:^.*str 如果是其他字符就把str替换为其他字符 ---------------- ...
- 分享一个基于Net Core 3.1开发的模块化的项目
先简单介绍下项目(由于重新基于模块化设计了整个项目,所以目前整个项目功能不多) 1.Asp.Net Core 3.1.2+MSSQL2019(LINUX版) 2.中间件涉及Redis.RabbitMQ ...
- Redis面试题集锦(精选)
1.什么是 Redis?简述它的优缺点? Redis的全称是:Remote Dictionary.Server,本质上是一个Key-Value 类型的内存数据库,很像memcached,整个数据库统统 ...
- vs code开发python时找不到当前目录下的文件、UnicodeDecodeError: 'gbk'
一.vs code开发python时找不到当前目录下的文件, file = open("readme.txt")一直报错,找不到目录下面的文件 原来vscode 默认都是以打开的项 ...