题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n)。

题解:假设a<b,如果gcd(a,b)=c。则gcd(a/c,b/c)=1。也就是说a/c和b/c互质,而与a/c互质的数一共有oula(a/c)个,也就是说这里的b/c一共有oula(a/c)种选择,同理,gcd(a,b)=c,a的选择就会有,oula(b/c)种。

所以 gcd(x,y)=1  ,枚举每一个x,然后在枚举x的k倍,答案就是ans[x*k]+=oula(x)*k。最后再求一下去前缀和就行了。

code:

  

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn=+;
const ll N=+;
ll sum[N];
ll ans[N];
ll p[N];
void oula(){
ll i,j;
for(i=; i<=maxn; i++)
p[i]=i;
for(i=; i<=maxn; i+=)
p[i]/=;
for(i=; i<=maxn; i+=)
if(p[i]==i)
{
for(j=i; j<=maxn; j+=i)
p[j]=(p[j]/i*(i-));
}
}
void solve(){ for(ll x=;x<maxn;x++)
for(ll i=;i*x<maxn;i++)
ans[i*x]=ans[i*x]+p[x]*i; for(ll i=;i<maxn;i++) ans[i]+=ans[i-];
}
int main(){
oula();
ll n;
solve();
while(cin>>n,n) cout<<ans[n]<<endl;
return ;
}

GCD - Extreme (II) UVA - 11426 欧拉函数与gcd的更多相关文章

  1. GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导

    Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...

  2. UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  3. GCD - Extreme (II) UVA - 11426(欧拉函数!!)

    G(i) = (gcd(1, i) + gcd(2, i) + gcd(3, i) + .....+ gcd(i-1, i)) ret = G(1) + G(2) + G(3) +.....+ G(n ...

  4. UVA 11426 (欧拉函数&&递推)

    题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1] ...

  5. UVA - 11426 欧拉函数(欧拉函数表)

    题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...

  6. GCD - Extreme (II) UVA - 11426 数学

    Given the value of N , you will have to nd the value of G . The de nition of G is given below: G = i ...

  7. F - GCD - Extreme (II) UVA - 11426

    Given the value of N, you will have to find the value of G. The definition of G is given below:

  8. GCD - Extreme (II) for(i=1;i<N;i++) for(j=i+1;j<=N;j++) { G+=gcd(i,j); } 推导分析+欧拉函数

    /** 题目:GCD - Extreme (II) 链接:https://vjudge.net/contest/154246#problem/O 题意: for(i=1;i<N;i++) for ...

  9. hdu (欧拉函数+容斥原理) GCD

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/ar ...

随机推荐

  1. P1969 积木大赛 题解

    原题链接 简要题意: 每次把一段区间 \(+1\),问得到 \(a\) 数组的最小次数. 我们可以把 \(+1\) 得到 \(a\) 换成,从 \(a\) 依次 \(-1\) 得到 \(0\). 算法 ...

  2. Manjaro更新后 搜狗拼音输入法突然无法正常使用

    之前Manjaro已经用了很久了,很多该配置的都已经配置好了,但是搜狗拼音在系统更新后突然无法使用 1检查 如下依赖 2.检查配置文件 3.发现一切配置没问题,此时输入 sogou-qimpanel ...

  3. 大规模机器学习(Large Scale Machine Learning)

    本博客是针对Andrew Ng在Coursera上的machine learning课程的学习笔记. 目录 在大数据集上进行学习(Learning with Large Data Sets) 随机梯度 ...

  4. Java GC(垃圾回收)机制知识总结

    目录 Java GC系列 Java关键术语 Java HotSpot 虚拟机 JVM体系结构 Java堆内存 启动Java垃圾回收 Java垃圾回收过程 垃圾回收中实例的终结 对象什么时候符合垃圾回收 ...

  5. Python批量修改Excel中的文件内容

    import osimport xlrdfrom xlutils.copy import copydef base_dir(filename=None):    return os.path.join ...

  6. Tarjan算法(模板)

    算法思想: 首先要明确强连通图的概念,一个有向图中,任意两个点互相可以到达:什么是强连通分量?有向图的极大连通子图叫强连通分量. 给一个有向图,我们用Tarjan算法把这个图的子图(在这个子图内,任意 ...

  7. Java基础语法(11)-面向对象之关键字

    title: Java基础语法(11)-面向对象之关键字 blog: CSDN data: Java学习路线及视频 1.this this是什么 它在方法内部使用,即这个方法所属对象的引用: clas ...

  8. coding++:SpringBoot-事务注解详解

    @Transactional spring 事务注解 1.简单开启事务管理 @EnableTransactionManagement // 启注解事务管理,等同于xml配置方式的 <tx:ann ...

  9. zookeeper 负载均衡

    1,原理 将启动的服务注册到zookeeper 注册中心上面,采用临时节点,zookeeper 客户端从注册中心上读取服务的信息,之后再本地采用负载均衡算法(取模算法),将请求轮询到每个服务. 同时z ...

  10. ESPCMS-Seay自动加手工代码审计

    ESPcms代码审计 源码下载地址:http://yesky.91speed.org.cn/sw/180001_190000/rar/espcms_utf8_5.4.12.05.14.rar 1.自动 ...