用python爬虫爬取去哪儿4500个热门景点,看看国庆不能去哪儿
前言:本文建议有一定Python基础和前端(html,js)基础的盆友阅读。

金秋九月,丹桂飘香,在这秋高气爽,阳光灿烂的收获季节里,我们送走了一个个暑假余额耗尽哭着走向校园的孩籽们,又即将迎来一年一度伟大祖国母亲的生日趴体(无心上班,迫不及待想为祖国母亲庆生!)。

那么问题来了,去哪儿玩呢?百度输了个“国庆”,出来的第一条居然是“去哪里旅游人少”……emmmmmmm,因缺思厅。

于是我萌生了通过旅游网站的景点销量来判断近期各景点流量情况的想法(这个想法很危险啊)。
所以这次的目标呢,是爬去哪儿网景点页面,并得到景点的信息,大家可以先思考下大概需要几步。
1.百度的地图API和echarts
这次正好爬的是数据,我决定用数据的好基友——图表来输出我爬取的数据,也就是说我要用爬取的景点销量以及景点的具体位置来生成一些可视化数据。
安利一下百度的地图API和echarts,前者是专门提供地图API的工具,听说好多APP都在用它,后者是数据处理居家旅行的好伙伴,用了之后,它好,我也好(隐约觉得哪里不对)。
API是什么,API是应用程序的编程接口,就好像插头与插座一样,我们的程序需要电(这是什么程序?),插座中提供了电,我们只需要在程序中写一个与插座匹配的插头接口,就可以使用电来做我们想做的事情,而不需要知道电是如何产生的。

再详细一点讲呢,就好比米酱的小说写完啦!但她还想把小说出成书,可是怎么出书捏?米酱不会呀,这时候米酱发现某出版社提供了出版服务,出版社表示只需要提供小说的正文、以及一个设计的封面就可以啦,于是米酱将小说保存成了word格式,又画了个封面jpg图,发给了出版社,没过多久米酱就拿到了一本装订好的书啦(此段纯属虚构,专业出版人士尽管打我,我不会承认的)。
在米酱出书的过程中,米酱并不需要知道出版社是怎么印刷这个书的,也不需要知道是怎么装订这个书的,米酱只需要提供出版社所要求的东西即可。

2.确定输出文件
有人可能说,我已经懂了api是啥意思了,可是咋个用呢。关于这一点,米酱很负责任的告诉你:我也不会。
但是!
百度地图提供了很多API使用示例,有html基础,大致可以看懂,有js基础就可以尝试改函数了(不会jsの我默默地复制源代码),仔细观察源代码,可以知道热力图的生成主要的数据都存放在points这个变量中。

这种[{x:x,x:x},{x:x,x:x}]格式的数据,是一种json格式的数据,由于具有自我描述性,所以比较通俗易懂,大概可以知道这里的三个值,前俩个是经纬度,最后一个应该是权重(我猜的)。
也就是说,如果我希望将景点的热门程度生成为热力图,我需要得到景点的经纬度,以及它的权重,景点的销量可以作为权重,并且这个数据应该是json格式的呈现方式。
echarts也是一样滴(*^__^*)。
3.爬取数据
其实这次的爬虫部分是比较简单的(如果你有跟着我的文爬过网站的话)。
分析网址(去哪儿景点)→爬取分页中信息(景点经纬度、销量)→转为json文件。
分析去哪儿景点页的网址可得出结构:http://piao.qunar.com/ticket/list.htm?keyword=搜索地点®ion=&from=mpl_search_suggest&page=页数
这次没有用正则来匹配内容,而使用了xpath匹配,肥肠好用。
def getList():
place = raw_input('请输入想搜索的区域、类型(如北京、热门景点等):')
url = 'http://piao.qunar.com/ticket/list.htm?keyword='+ str(place) +'®ion=&from=mpl_search_suggest&page={}'
i = 1
sightlist = []
while i:
page = getPage(url.format(i))
selector = etree.HTML(page)
print '正在爬取第' + str(i) + '页景点信息'
i+=1
informations = selector.xpath('//div[@class="result_list"]/div')
for inf in informations: #获取必要信息
sight_name = inf.xpath('./div/div/h3/a/text()')[0]
sight_level = inf.xpath('.//span[@class="level"]/text()')
if len(sight_level):
sight_level = sight_level[0].replace('景区','')
else:
sight_level = 0
sight_area = inf.xpath('.//span[@class="area"]/a/text()')[0]
sight_hot = inf.xpath('.//span[@class="product_star_level"]//span/text()')[0].replace('热度 ','')
sight_add = inf.xpath('.//p[@class="address color999"]/span/text()')[0]
sight_add = re.sub('地址:|(.*?)|\(.*?\)|,.*?$|\/.*?$','',str(sight_add))
sight_slogen = inf.xpath('.//div[@class="intro color999"]/text()')[0]
sight_price = inf.xpath('.//span[@class="sight_item_price"]/em/text()')
if len(sight_price):
sight_price = sight_price[0]
else:
i = 0
break
sight_soldnum = inf.xpath('.//span[@class="hot_num"]/text()')[0]
sight_url = inf.xpath('.//h3/a[@class="name"]/@href')[0]
sightlist.append([sight_name,sight_level,sight_area,float(sight_price),int(sight_soldnum),float(sight_hot),sight_add.replace('地址:',''),sight_slogen,sight_url])
time.sleep(3)
return sightlist,place
1.这里把每个景点的所有信息都爬下来了(其实是为了练习使用xpath……)。
2.使用了while循环,for循环的break的方式是发现无销量时给i值赋零,这样while循环也会同时结束。
3.地址的匹配使用re.sub()函数去除了n多复杂信息,这点后面解释。
4.输出本地文本
为了防止代码运行错误,为了维护代码运行的和平,将输出的信息列表存入到excel文件中了,方便日后查阅,很简单的代码,需要了解pandas的用法。
def listToExcel(list,name):
df = pd.DataFrame(list,columns=['景点名称','级别','所在区域','起步价','销售量','热度','地址','标语','详情网址'])
df.to_excel(name + '景点信息.xlsx')
5.百度经纬度api
肥肠悲伤的,(ಥ﹏ಥ)我没找到去哪儿景点的经纬度,以为这次学(zhuang)习(bi)计划要就此流产了。(如果有人知道景点经纬度在哪里请告诉我)
但是,enhahhahahaha,我怎么会放弃呢,我又找到了百度经纬度api,网址:http://api.map.baidu.com/geocoder/v2/?address=地址&output=json&ak=百度密钥 ,修改网址里的“地址”和“百度密钥”,在浏览器打开,就可以看到经纬度的json信息。
#上海市东方明珠的经纬度信息
{"status":0,"result":{"location":{"lng":121.5064701060957,"lat":31.245341811634675},"precise":1,"confidence":70,"level":"UNKNOWN"}}
这样我就可以根据爬到的景点地址,查到对应的经纬度辣!python获取经纬度json数据的代码如下。
def getBaiduGeo(sightlist,name):
ak = '密钥'
headers = {
'User-Agent' :'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36'
}
address = 地址
url = 'http://api.map.baidu.com/geocoder/v2/?address=' + address + '&output=json&ak=' + ak
json_data = requests.get(url = url).json()
json_geo = json_data['result']['location']
观察获取的json文件,location中的数据和百度api所需要的json格式基本是一样,还需要将景点销量加入到json文件中,这里可以了解一下json的浅拷贝和深拷贝知识,最后将整理好的json文件输出到本地文件中。
def getBaiduGeo(sightlist,name):
ak = '密钥'
headers = {
'User-Agent' :'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36'
}
list = sightlist
bjsonlist = []
ejsonlist1 = []
ejsonlist2 = []
num = 1
for l in list:
try:
try:
try:
address = l[6]
url = 'http://api.map.baidu.com/geocoder/v2/?address=' + address + '&output=json&ak=' + ak
json_data = requests.get(url = url).json()
json_geo = json_data['result']['location']
except KeyError,e:
address = l[0]
url = 'http://api.map.baidu.com/geocoder/v2/?address=' + address + '&output=json&ak=' + ak
json_data = requests.get(url = url).json()
json_geo = json_data['result']['location']
except KeyError,e:
address = l[2]
url = 'http://api.map.baidu.com/geocoder/v2/?address=' + address + '&output=json&ak=' + ak
json_data = requests.get(url = url).json()
json_geo = json_data['result']['location']
except KeyError,e:
continue
json_geo['count'] = l[4]/100
bjsonlist.append(json_geo)
ejson1 = {l[0] : [json_geo['lng'],json_geo['lat']]}
ejsonlist1 = dict(ejsonlist1,**ejson1)
ejson2 = {'name' : l[0],'value' : l[4]/100}
ejsonlist2.append(ejson2)
print '正在生成第' + str(num) + '个景点的经纬度'
num +=1
bjsonlist =json.dumps(bjsonlist)
ejsonlist1 = json.dumps(ejsonlist1,ensure_ascii=False)
ejsonlist2 = json.dumps(ejsonlist2,ensure_ascii=False)
with open('./points.json',"w") as f:
f.write(bjsonlist)
with open('./geoCoordMap.json',"w") as f:
f.write(ejsonlist1)
with open('./data.json',"w") as f:
f.write(ejsonlist2)
(╯' - ')╯┻━┻
在设置获取经纬度的地址时,为了匹配到更准确的经纬度,我选择了匹配景点地址,然鹅,景点地址里有各种神奇的地址,带括号解释在XX对面的,说一堆你应该左拐右拐各种拐就能到的,还有英文的……于是就有了第三章中复杂的去除信息(我终于圆回来了!)。
然鹅,就算去掉了复杂信息,还有一些匹配不到的景点地址,于是我使用了嵌套try,如果景点地址匹配不到;就匹配景点名称,如果景点名称匹配不到;就匹配景点所在区域,如果依然匹配不到,那我……那我就……那我就跳过ㄒ_ㄒ……身为一个景点,你怎么能,这么难找呢!不要你了!
这里生成的三个json文件,一个是给百度地图api引入用的,另俩个是给echarts引入用的。
6.网页读取json文件
将第二章中所述的百度地图api示例中的源代码复制到解释器中,添加密钥,保存为html文件,打开就可以看到和官网上一样的显示效果。echarts需要在实例页面,点击页面右上角的EN切换到英文版,然后点击download demo下载完整源代码。
根据html导入json文件修改网页源码,导入json文件。
#百度地图api示例代码中各位置修改部分
<head>
<script src="http://libs.baidu.com/jquery/2.0.0/jquery.js"></script>
</head>
<script type="text/javascript">
$.getJSON("points.json", function(data){
var points = data;
script中原有函数;
});
</script>
这里使用了jQuery之后,即使网页调试成功了,在本地打开也无法显示网页了,在chrome中右键检查,发现报错提示是需要在服务器上显示,可是,服务器是什么呢?

百度了一下,可以在本地创建一个服务器,在终端进入到html文件所在文件夹,输入python -m SimpleHTTPServer,再在浏览器中打开http://127.0.0.1:8000/,记得要将html文件名设置成index.html哦~

7.后记
因为注册但没有认证开发者账号,所以每天只能获取6K个经纬度api(这是一个很好的偷懒理由),所以我选择了热门景点中前400页(每页15个)的景点,结果可想而知,(ಥ﹏ಥ)为了调试因为数据增多出现的额外bug,最终的获取的景点数据大概在4k5条左右(爬取时间为2017年09月10日,爬取关键词:热门景点,仅代表当时销量)。


这些地图上很火爆的区域,我想在国庆大概是这样的

这样的

还有这样的

将地图上热门景点的销量top20提取出来,大多数都是耳熟能详的地点,帝都的故宫排在了第一位,而大四川则占据了top5中的三位,而排在top20中也四川省就占了6位,如果不是因为地震,我想还会有更多的火爆的景点进入排行榜的~这样看来如果你这次国庆打算去四川的话,可以脑补到的场景就是:人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人人……

于是我又做了一个各城市包含热门景点数目的排行,没想到在4千多个热门景点中,数目最多的竟是我大浙江,是第二个城市的1.5倍,而北京作为首都也……可以说是景点数/总面积的第一位了。

这些城市有辣么多热门景点,都是些什么级别的景点呢?由下图看来,各城市的各级别景点基本与城市总热门景点呈正相关,而且主要由4A景区贡献而来。

既然去哪些地方人多,去哪里景多都已经知道了,那再看看去哪些地方烧得钱最多吧?下图是由各城市景点销售起步价的最大值-最小值扇形组成的圆,其中湖北以单景点销售起步价600占据首位,但也可以看到,湖北的景点销售均价并不高(在红色扇形中的藏蓝色线条)。而如果国庆去香港玩,请做好钱包减肥的心理和生理准备(•̀ω•́)✧。

好啦分析完啦,ヾ(*ΦωΦ)ツ大家可要好好玩呀。
PS:写了个网页,展示百度地图的热力图效果和echarts的景点排行榜,方便大家查看。http://easyinfo.online 源码已经上传到gayhub啦~写完这篇文的时候发现echarts有针对python的模块可以引入,所以打算去学一下Django、Flask之类的web框架,最近会更一些纯理论的意识流文,大家一起进步吧~
建了一个qq群,欢迎各位来交♂流学♀习→python交友娱乐会所:613176398
用python爬虫爬取去哪儿4500个热门景点,看看国庆不能去哪儿的更多相关文章
- python爬虫—爬取英文名以及正则表达式的介绍
python爬虫—爬取英文名以及正则表达式的介绍 爬取英文名: 一. 爬虫模块详细设计 (1)整体思路 对于本次爬取英文名数据的爬虫实现,我的思路是先将A-Z所有英文名的连接爬取出来,保存在一个cs ...
- 一个简单的python爬虫,爬取知乎
一个简单的python爬虫,爬取知乎 主要实现 爬取一个收藏夹 里 所有问题答案下的 图片 文字信息暂未收录,可自行实现,比图片更简单 具体代码里有详细注释,请自行阅读 项目源码: # -*- cod ...
- Python爬虫 - 爬取百度html代码前200行
Python爬虫 - 爬取百度html代码前200行 - 改进版, 增加了对字符串的.strip()处理 源代码如下: # 改进版, 增加了 .strip()方法的使用 # coding=utf-8 ...
- 用Python爬虫爬取广州大学教务系统的成绩(内网访问)
用Python爬虫爬取广州大学教务系统的成绩(内网访问) 在进行爬取前,首先要了解: 1.什么是CSS选择器? 每一条css样式定义由两部分组成,形式如下: [code] 选择器{样式} [/code ...
- 使用Python爬虫爬取网络美女图片
代码地址如下:http://www.demodashi.com/demo/13500.html 准备工作 安装python3.6 略 安装requests库(用于请求静态页面) pip install ...
- Python爬虫|爬取喜马拉雅音频
"GOOD Python爬虫|爬取喜马拉雅音频 喜马拉雅是知名的专业的音频分享平台,用户规模突破4.8亿,汇集了有声小说,有声读物,儿童睡前故事,相声小品等数亿条音频,成为国内发展最快.规模 ...
- python爬虫爬取内容中,-xa0,-u3000的含义
python爬虫爬取内容中,-xa0,-u3000的含义 - CSDN博客 https://blog.csdn.net/aiwuzhi12/article/details/54866310
- Python爬虫爬取全书网小说,程序源码+程序详细分析
Python爬虫爬取全书网小说教程 第一步:打开谷歌浏览器,搜索全书网,然后再点击你想下载的小说,进入图一页面后点击F12选择Network,如果没有内容按F5刷新一下 点击Network之后出现如下 ...
- python爬虫-爬取百度图片
python爬虫-爬取百度图片(转) #!/usr/bin/python# coding=utf-8# 作者 :Y0010026# 创建时间 :2018/12/16 16:16# 文件 :spider ...
- python爬虫---爬取王者荣耀全部皮肤图片
代码: import requests json_headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win ...
随机推荐
- matlab-常用函数(2)
isempty(A) 功能解释 isempty()用来判断 一个矩阵是否为空矩阵,其用法相当于C语言中的"a==NULL". 当参数为空矩阵时,该函数返回逻辑值"1&qu ...
- MyEclipse安装步骤和破解
Myeclipse的安装步骤 MyEclipse简介: MyEclipse,是在eclipse 基础上加上自己的插件开发而成的功能强大的企业级集成开发环境,主要用于Java.Java EE以及移动应用 ...
- 团队作业八—第二次团队冲刺(Beta版本) 第 2 天
一.每个人的工作 (1) 昨天已完成的工作 昨天的工作主要是一些界面的设计,我们顺利完成了复杂模式题目数目界面.复杂模式做题界面.结果统计界面的具体代码编写,和一些细节的完善.还有日常冲刺博客的编辑. ...
- 201521123090 《Java程序设计》第4周学习总结
1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 继承与多态的概念与实现 父类与之类的关系 解决代码复用的办法 2. 书面作业 注释的应用 使 ...
- 201521123075 《Java程序设计》第1周学习总结
1. 本周学习总结 (1)Java不仅是程序语言,还是一种标准规范,代表着解决问题的方案.Java是一个面向对象的编程语言,熟悉后相对于c++更方便,其一大特色就是能够跨平台运行. (2)Java发展 ...
- 201521123087 《Java程序设计》第1周学习总结
1.学习总结 初步了解面对对象编程思想 学会安装JDK和设置JAVA_HOME,PATH,CLASSPATH环境变量 简单了解java 2.书面作业 1.为什么java程序可以跨平台运行?执行java ...
- Java实现Windows平台下Ping的最佳方法
先上结论:通过调用系统自带的Ping命令来实现,使用exitValue()值来判断Ping的结果.按照惯例,0表示ok,1表示不通. private static void pingTest1() t ...
- 201521123093 java 第十周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. Runnable不是线程,Thread才是,必须将实现Runnable接口的类的对象放入Thread中才能在 ...
- 201521123098 《Java程序设计》第12周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 1. Input Stream -- 数据提供者可从其中读数据输出流:Output Stream -- 数据接 ...
- 201521123020 《Java程序设计》第9周学习总结
1.本周学习总结 2. 书面作业 1.常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自己以前编写的代码中经常出现什么异常.需要捕获吗(为什么)?应如何避免? 答:数组越界:不需要 ...