令$f_{S}$表示字符串$S$的答案(所有子集的方案数之和),考虑转移:

1.最后是一个字符串,不妨仅考虑最后一个字符,即$f_{S[1,|S|)}$(字符串下标从1开始),特别的,若$S_{|S|}=1$,还有一个2倍的系数

2.是一个乘法,考虑是$k\times T$,记$l=|T|$,则$T$需要是末尾$k$段长为$l$的串的公共子集,不难发现这个公共子集就是这$k$个串求and后的串$T'$的子集,那么贡献即为$f_{T'}\cdot f_{S[1,|S|-kl]}$

对其记忆化搜索即可,以下来证明状态数:

考虑$f_{S[1,|S|-kl]}$这个状态,一定会通过第一种若干次后得到,因此不需要考虑

接下来,构造一棵搜索树,但这棵搜索树的每一个儿子是父亲的一个长为$kl$的子串($k\ge 2$)的$k$段字符串求and后的结果,$S$为第一层

对于四层即以后的字符串,长度一定不超过$\lfloor\frac{n}{8}\rfloor$,即至多$o(2^{\lfloor\frac{n}{8}\rfloor})$个

对于前三层的字符串,显然只需要统计第三层就足够了

当其中某一层的$k\ge 3$时,那么这一个串长度不超过$\lfloor\frac{n}{6}\rfloor$,类似的总量为$o(2^{\lfloor\frac{n}{6}\rfloor})$,也可以接受

接下来,每一层的$k$都为2,之后假设其父亲长度为$l_{1}$,自己的长度为$l_{2}$,其对应于$S$中,即$S$中的4个长为$l_{2}$的串的and,且第1和2个串相连、第3和4个串相连

因此这个字符串仅取决于第一个起点、第二个起点以及串长,总量为$o(n^{3})$

总复杂度约为$o(2^{\lfloor\frac{n}{6}\rfloor}+n^{3})$,实际上分析仍有很大的改善空间,即跑不满

具体记忆化的实现哈希+map即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 105
4 #define mod 998244353
5 map<int,int>f[N];
6 char s[N];
7 int get_hash(int l,char *s){
8 int ans=0;
9 for(int i=0;i<l;i++)ans=(3LL*ans+s[i]-'0')%mod;
10 return ans;
11 }
12 int dfs(int l,char *s){
13 if (!l)return 1;
14 int h=get_hash(l,s);
15 if (f[l][h])return f[l][h];
16 int ans=(1+s[l-1]-'0')*dfs(l-1,s)%mod;
17 char t[N];
18 for(int i=1;i<=l/2;i++){
19 for(int k=0;k<i;k++)t[k]=s[l-i+k];
20 for(int j=2;i*j<=l;j++){
21 for(int k=0;k<i;k++)t[k]=min(t[k],s[l-i*j+k]);
22 ans=(ans+1LL*dfs(l-i*j,s)*dfs(i,t))%mod;
23 }
24 }
25 return f[l][h]=ans;
26 }
27 int main(){
28 scanf("%s",s);
29 printf("%d",dfs(strlen(s),s));
30 }

[atAGC020E]Encoding Subsets的更多相关文章

  1. AtCoder Grand Contest 020 (AGC020) E - Encoding Subsets 动态规划

    原文链接www.cnblogs.com/zhouzhendong/p/AGC020E.html 前言 真 \(\cdot\) 信仰型动态规划 题解 我们可以采用信仰型动态规划解决此题. 设 \(dp[ ...

  2. Atcoder Grand Contest 020 E - Encoding Subsets(记忆化搜索+复杂度分析)

    Atcoder 题面传送门 & 洛谷题面传送门 首先先考虑如果没有什么子集的限制怎样计算方案数.明显就是一个区间 \(dp\),这个恰好一年前就做过类似的题目了.我们设 \(f_{l,r}\) ...

  3. 【AtCoder】AGC020

    A - Move and Win 题解 看两个人相遇的时候谁先手即可,相遇之后第一个移动的人必输 代码 #include <bits/stdc++.h> #define fi first ...

  4. DP 做题记录 II.

    里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...

  5. WC2021 题目清单

    Day2 上午 <IOI题型与趣题分析> 来源 题目 完成情况 备注 IOI2002 Day1T1 Frog 已完成 IOI2002 Day1T2 Utopia IOI2002 Day1T ...

  6. 多校联训 DP 专题

    [UR #20]跳蚤电话 将加边变为加点,方案数为 \((n-1)!\) 除以一个数,\(dp\) 每种方案要除的数之和即可. 点击查看代码 #include<bits/stdc++.h> ...

  7. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  8. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  9. Direct Access to Video Encoding and Decoding

    来源:http://asciiwwdc.com/2014/sessions/513   Direct Access to Video Encoding and Decoding  Session 5 ...

随机推荐

  1. 程序员微机课系列—我的nodejs多版本管理方法

    nodejs的多版本配置对于我来说一直都是一个较为头疼的事情.本人的开发工作会涉及electron以及前端,对于工作中使用的npm包(点名node-sqlite3和node-sass)在某些情况下,会 ...

  2. Java泛型中的细节

    Java泛型中的细节 如果没有泛型 学习Java,必不可少的一个过程就是需要掌握泛型.泛型起源于JDK1.5,为什么我们要使用泛型呢?泛型可以使编译器知道一个对象的限定类型是什么,这样编译器就可以在一 ...

  3. 从零入门 Serverless | 一文搞懂函数计算及其工作原理

    作者 | 孔德慧(夏莞) 阿里云函数计算开发工程师 什么是函数计算 大家都了解,Serverless 并不是没有服务器,而是开发者不再需要关心服务器.下图是一个应用从开发到上线的对比图: 在传统 Se ...

  4. 阿里云研究员叔同:Serverless 正当时!

    作者 | 叔同 导读:Serverless 将开发人员从繁重的手动资源管理和性能优化中解放出来,就像数十年前汇编语言演变到高级语言的过程一样,云计算生产力再一次发生变革.Serverless 的核心价 ...

  5. Java基础之(六):变量、运算符与JavaDoc

    变量.常量 一.变量的命名规范 首字母只能以字母(A-Z或者a-z)或者美元符($)或者下划线(_)开头,不能以数字开头,首字母之后只能跟字母(AZ或者az)或者数字,不能跟美元符或者下划线 源码 p ...

  6. GPIO位带操作点亮LED,且使用按键控制开关

    1. 项目 类似与C51单片机的位操作使能引脚来点亮LED. 例如,sbit P0^0 = 0 LED1 = P0^0; 2. 代码 main.c #include "stm32f10x.h ...

  7. 保护模式篇——TLB与CPU缓存

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...

  8. Map中getOrDefault()与数值进行比较

    一般用哈希表计数时,value类型通常为Integer.如果想比较某个key出现的次数,使用get(key)与某个数值进行比较是有问题的.当哈希表中并不包含该key时,因为此时get方法返回值是nul ...

  9. [技术博客]WEB实现划词右键操作

    [技术博客]WEB实现划词右键操作 一.功能解释 简单地对题目中描述的功能进行解释:在浏览器中,通过拖动鼠标选中一个词(或一段文字),右键弹出菜单,且菜单为自定义菜单,而非浏览器本身的菜单.类似的功能 ...

  10. HMS Core Keyring携手航班管家和高铁管家,打造美好出行体验

    高铁管家是国内最早⽀持⼿机⽀付购买⽕⻋票App之⼀,日活用户超380万,为⽤户提供一站式铁路出⾏服务.高铁管家母公司--深圳市活⼒天汇科技股份有限公司是国内智能⼤出⾏的开创者,先后推出航班管家.⾼铁管 ...