【BZOJ1041】圆上的整点(数论)
【BZOJ1041】圆上的整点(数论)
题面
题解
好神仙的题目啊。
安利一个视频,大概是第\(7\)到\(19\)分钟的样子
因为要质因数分解,所以复习了一下\(Pollard\_rho\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
int n,ans=1;
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
bool Miller_Rabin(int n)
{
if(n==2)return true;
for(int tim=10;tim;--tim)
{
int a=rand()%(n-2)+2,p=n-1;
if(fpow(a,p,n)!=1)return false;
while(!(p&1))
{
p>>=1;int nw=fpow(a,p,n);
if(1ll*nw*nw%n==1&&nw!=1&&nw!=n-1)return false;
}
}
return true;
}
vector<int> fac;
int Pollard_rho(int n,int c)
{
int i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(1ll*x*x%n+c)%n;
int d=__gcd((y-x+n)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
void Fact(int n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
int p=n;while(p>=n)p=Pollard_rho(p,c--);
Fact(p,c);Fact(n/p,c);
}
int main()
{
cin>>n;Fact(n,233);sort(fac.begin(),fac.end());
for(int i=0,l=fac.size(),pos;i<l;i=pos+1)
{
int cnt=1;
pos=i;while(pos<l-1&&fac[i]==fac[pos+1])++pos,++cnt;
if(fac[i]==2)continue;
if(fac[i]%4==1)ans=ans*(cnt*2+1);
}
printf("%d\n",ans*4);
return 0;
}
【BZOJ1041】圆上的整点(数论)的更多相关文章
- 【bzoj1041】[HAOI2008]圆上的整点 数论
题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...
- BZOJ1041:[HAOI2008]圆上的整点(数论)
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...
- bzoj1041 圆上的整点 数学
题目传送门 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 思路:没思路,看大佬的博客(转载自https://blog.csdn.net/csyzcyj),转载只 ...
- [BZOJ1041]圆上的整点
嗯... 自己看视频讲解? >Click Here< #include<cstdio> #include<queue> #include<iostream&g ...
- 【BZOJ1041】[HAOI2008]圆上的整点
[BZOJ1041][HAOI2008]圆上的整点 题面 bzoj 洛谷 题解 不妨设\(x>0,y>0\) \[ x^2+y^2=r^2\\ y^2=(x+r)(x-r) \] 设\(r ...
- 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )
2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...
- BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4210 Solved: 1908[Submit][Sta ...
- bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点
http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...
- BZOJ1041 [HAOI2008]圆上的整点 【数学】
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 4631 Solved: 2087 [Submit][S ...
随机推荐
- java多线程相关代码
1.创建线程的三种方式 使用Thread package com.wpbxx.test; //1.自定义一个类,继承java.lang包下的Thread类 class MyThread extends ...
- The Art of Multiprocessor Programming读书笔记 (更新至第3章)
这份笔记是我2013年下半年以来读“The Art of Multiprocessor Programming”这本书的读书笔记.目前有关共享内存并发同步相关的书籍并不多,但是学术文献却不少,跨越的时 ...
- python数据分析画图体验
对于numpy的函数,pands等,不是很熟,我来copy一下code,敲击一下,找找感觉. 默认的导入包import numpy as npimport matplotlib.pyplot as p ...
- 使用sqlyog创建数据库的错误
1.错误代码: 1064 You have an error in your SQL syntax; check the manual that corresponds to your MySQL s ...
- Anaconda 下libsvm的安装
方法一. 利用VS生成动态库的安装 详细可参考这篇博文进行操作:https://blog.csdn.net/jeryjeryjery/article/details/72628255 方法二. ...
- Docker基础教程
一.Docker是什么? KVM, Virtualbox, Vmware是虚拟出机器,让每个实例看到一个单独的机器:而Docker是虚拟出操作系统,实现应用之间的隔离,让各个应用觉得自己有一个自己的操 ...
- ASP.NET MVC 3.0 参考源码索引
http://www.projky.com/asp.netmvc/3.0/Microsoft/Internal/Web/Utils/CommonResources.cs.htmlhttp://www. ...
- 使用node-webkit包装浏览器
node-webkit简称nwjs:开源地址 https://github.com/nwjs/nw.js 参考博客 https://www.cnblogs.com/soaringEveryday/p/ ...
- jquery 点击弹出层自身以外的任意位置,关闭弹出层
<!--弹出层---> <div class="mask"> <div class="wrap"></div&g ...
- source和sh
写了一个脚本[xxyScript.sh],用于判断tomcat是否启动 #!/bin/bash if [ -z "$(ps -ef | grep tomcat | grep -v 'grep ...