Description

  

​   一排\(n\)个格子,每个格子可以涂三种颜色的一种。现在给出\(m\)个形如“\([l,r]\)中必须恰好有\(x\)种颜色"的限制(\(1 \le l \le r \le n, 1 \le x \le 3\))。

  

​   求一共有多少种满足所有限制的合法涂色方案。

  

​   答案对\(10^9+7\)取模。

    

  

  

Solution

  

​   首先要想到状态表示法,如何表示才能适应这些限制呢?由于是限制颜色种类数,可以考虑最早出现位置这类套路。

  

​   设\(f_{i,j,k}\)表示:当前走完\(1...i\),在\(i\)左边最靠右的、与\(i\)颜色不同的位置为\(j\),在\(j\)左边最靠右的、与\(i\)和\(j\)颜色不同的位置为\(k\)时,目前合法染色方案数是多少。

  

​   逐步计算\(f_1,f_2,...\)。

  

​   接下来考虑限制。考虑在转移的时候逐一枚举限制来判断新状态是否合法。

    

​   则总复杂度是\(\mathcal O(n^3m)\)的。还有3倍常数,显然不够优秀。

  

​   然而这只是臆想做法,具体我也没实现出来,因为枚举限制的时候,限制的区间和\(i,j,k\)的位置的关系实在太多,不好写。

  

​   实际上,对于一个\([l,r]\)的限制,它只需要去管\(i==r\)的那些状态是否合法即可。如果\(i<r\),那么显然还没有考虑的必要(都没填完\([l,r]\),考虑什么呢?)。如果\(r<i\)那么已经晚了。所以每个条件至多被枚举一次。

  

​   因此总复杂度是\(\mathcal O (n^2(n+m))\)的。

  

​   所以下次觉得枚举限制条件十分复杂且时间复杂度爆炸的时候,不妨想一想限制条件或许只针对特定对象才起效果或必要,这样就可以减少总枚举次数,优化复杂度。

  

​  

  

  

  

Code

  

#include <cstdio>
#include <algorithm>
#include <vector>
#define pb push_back
#define mp make_pair
using namespace std;
typedef pair<int,int> pii;
const int N=310;
const int MOD=1e9+7;
int n,m;
int f[N][N][N];
vector<pii> lis[N];
void readData(){
scanf("%d%d",&n,&m);
int l,r,x;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&l,&r,&x);
lis[r].pb(mp(l,x));
}
}
void dp(){
f[1][0][0]=1;
for(int i=1;i<=n;i++){
for(int d=0,sz=lis[i].size();d<sz;d++){
int l=lis[i][d].first,x=lis[i][d].second;
for(int j=0;j<i;j++)
for(int k=0;k<=(j-(j>0));k++){
if(x==1){
if(l<=j) f[i][j][k]=0;
}
else if(x==2){
if(l<=k||j<l) f[i][j][k]=0;
}
else{
if(k<l) f[i][j][k]=0;
}
}
}
if(i==n) break;
for(int j=0;j<i;j++)
for(int k=0;k<=(j-(j>0));k++)
if(f[i][j][k]){
(f[i+1][j][k]+=f[i][j][k])%=MOD;
(f[i+1][i][k]+=f[i][j][k])%=MOD;
(f[i+1][i][j]+=f[i][j][k])%=MOD;
}
}
int ans=0;
for(int j=0;j<n;j++)
for(int k=0;k<=(j-(j>0));k++)
(ans+=f[n][j][k])%=MOD;
ans=1LL*ans*3%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
}
int main(){
readData();
dp();
return 0;
}

【ARC074e】RGB sequence的更多相关文章

  1. 【arc074e】RGB Sequence(动态规划)

    [arc074e]RGB Sequence(动态规划) 题面 atcoder 洛谷 翻译见洛谷 题解 直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一 ...

  2. 【arc074e】RGB Sequence dp

    Description ​ 丰泽爷今天也在愉快地玩Minecraft! ​ 现在丰泽爷有一块1∗N1∗N的空地,每个格子按照顺序标记为11到NN.丰泽爷想要在这块空地上铺上红石块.绿宝石块和钻石块作为 ...

  3. 【XSY3209】RGB Sequence

    题目 传送门 解法 用\(f_{i, j, k}\)表示有\(i\)个红石块, \(j\)个绿宝石块, \(k\)个钻石块 可以转移到\(f_{p+1, j, k}\). \(f_{i, p+1,k ...

  4. 【arc071f】Infinite Sequence(动态规划)

    [arc071f]Infinite Sequence(动态规划) 题面 atcoder 洛谷 题解 不难发现如果两个不为\(1\)的数连在一起,那么后面所有数都必须相等. 设\(f[i]\)表示\([ ...

  5. 【BZOJ1367】[Baltic2004]sequence 左偏树

    [BZOJ1367][Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sampl ...

  6. 【BZOJ3043】IncDec Sequence 乱搞

    [BZOJ3043]IncDec Sequence Description 给定一个长度为n的数列{a1,a2...an},每次可以选择一个区间[l,r],使这个区间内的数都加一或者都减一.问至少需要 ...

  7. 【C#】RGB,CMYK,HSB各种颜色表示的转换(转)

    [C#]RGB,CMYK,HSB各种颜色表示的转换   一.表示颜色的方式有很多种,如RGB,CMYK,HSB,Hex等等 1.RGB:这种表示颜色由三原色构成,通过红,绿,蓝三种颜色分量的不同,组合 ...

  8. T89353 【BIO】RGB三角形

    T89353 [BIO]RGB三角形 题解 对于这个题目有一个规律:  如果一个数列的长度为 3k+1(0<=k) 那么,这个数列最终缩放成的一个字母只和这个数列的首项,尾项有关 所以我们可以先 ...

  9. 【AGC025B】RGB Color

    [AGC025B]RGB Color 题面描述 Link to Atcoder Link to Luogu Takahashi has a tower which is divided into \( ...

随机推荐

  1. IDEA主题设置

    主题下载: Color Themes(个人倾向该网站,而不是http://www.riaway.com/) 主题设置: 打开IDEA,按下Ctrl+Alt+S,选择Editor-->Color ...

  2. 云计算时代,传统企业 IT 从业者如何做好转型?

    本文来源于国外社区 DZone,作者 Dennis O'Reilly 撰写过多篇关于云计算.混合云等内容的文章,本文内容围绕云计算时代,企业纷纷上云,传统 IT 从业者如何做好转型. 本文由“数梦工场 ...

  3. Python学习之路目录(收藏整理)

    目录 Python之路[第一篇]:Python简介和入门 Python之路[第二篇]:Python基础(一) Python之路[第三篇]:Python基础(二) Python之路[第四篇]:模块    ...

  4. git ssh密钥配置添加

    1.  初次安装git配置用户名和邮箱 $ git config --global user.name "xxx" $ git config --global user.email ...

  5. TCP协议数据包及攻击分析

    TCP/IP协议栈中一些报文的含义和作用 URG: Urget pointer is valid (紧急指针字段值有效) SYN: 表示建立连接 FIN: 表示关闭连接 ACK: 表示响应 PSH: ...

  6. xlrd模块学习

    python常用模块目录 )# 打开Excel文件读取数据 import xlrd workbook = xlrd.open_workbook('mcw_test.xlsx') print(workb ...

  7. 第十次ScrumMeeting博客

    第十次ScrumMeeting博客 本次会议于11月5日(日)22时整在新主楼G座2楼召开,持续20分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕.方科栋. 特邀嘉宾:陈彦吉学长. 1. 每个人 ...

  8. Kubernetes探索学习005--Kubernetes的Controller模型和ReplicaSet伸缩

    1.Kubernetes的controller pattern 需要认识到Kubernetes操作Pod的逻辑,都是由控制器来完成的. 查看之前写过的nginx-deployment的YAML文件 [ ...

  9. mybatis批量插入oracle

    <insert id="batchInsert" parameterType="java.util.List"> INSERT INTO TEST( ...

  10. java的内存管理机制

    1.内存区域的分类 栈内存:基本类型变量和对象的引用,优势在于存取速度快 堆内存:new创建的对象和数组以及对象的实例化变量,优势在于动态分配内存,但是存取速度相对较慢 2.不同类型的内存分配 (1) ...