【ARC074e】RGB sequence
Description
一排\(n\)个格子,每个格子可以涂三种颜色的一种。现在给出\(m\)个形如“\([l,r]\)中必须恰好有\(x\)种颜色"的限制(\(1 \le l \le r \le n, 1 \le x \le 3\))。
求一共有多少种满足所有限制的合法涂色方案。
答案对\(10^9+7\)取模。
Solution
首先要想到状态表示法,如何表示才能适应这些限制呢?由于是限制颜色种类数,可以考虑最早出现位置这类套路。
设\(f_{i,j,k}\)表示:当前走完\(1...i\),在\(i\)左边最靠右的、与\(i\)颜色不同的位置为\(j\),在\(j\)左边最靠右的、与\(i\)和\(j\)颜色不同的位置为\(k\)时,目前合法染色方案数是多少。
逐步计算\(f_1,f_2,...\)。
接下来考虑限制。考虑在转移的时候逐一枚举限制来判断新状态是否合法。
则总复杂度是\(\mathcal O(n^3m)\)的。还有3倍常数,显然不够优秀。
然而这只是臆想做法,具体我也没实现出来,因为枚举限制的时候,限制的区间和\(i,j,k\)的位置的关系实在太多,不好写。
实际上,对于一个\([l,r]\)的限制,它只需要去管\(i==r\)的那些状态是否合法即可。如果\(i<r\),那么显然还没有考虑的必要(都没填完\([l,r]\),考虑什么呢?)。如果\(r<i\)那么已经晚了。所以每个条件至多被枚举一次。
因此总复杂度是\(\mathcal O (n^2(n+m))\)的。
所以下次觉得枚举限制条件十分复杂且时间复杂度爆炸的时候,不妨想一想限制条件或许只针对特定对象才起效果或必要,这样就可以减少总枚举次数,优化复杂度。
Code
#include <cstdio>
#include <algorithm>
#include <vector>
#define pb push_back
#define mp make_pair
using namespace std;
typedef pair<int,int> pii;
const int N=310;
const int MOD=1e9+7;
int n,m;
int f[N][N][N];
vector<pii> lis[N];
void readData(){
scanf("%d%d",&n,&m);
int l,r,x;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&l,&r,&x);
lis[r].pb(mp(l,x));
}
}
void dp(){
f[1][0][0]=1;
for(int i=1;i<=n;i++){
for(int d=0,sz=lis[i].size();d<sz;d++){
int l=lis[i][d].first,x=lis[i][d].second;
for(int j=0;j<i;j++)
for(int k=0;k<=(j-(j>0));k++){
if(x==1){
if(l<=j) f[i][j][k]=0;
}
else if(x==2){
if(l<=k||j<l) f[i][j][k]=0;
}
else{
if(k<l) f[i][j][k]=0;
}
}
}
if(i==n) break;
for(int j=0;j<i;j++)
for(int k=0;k<=(j-(j>0));k++)
if(f[i][j][k]){
(f[i+1][j][k]+=f[i][j][k])%=MOD;
(f[i+1][i][k]+=f[i][j][k])%=MOD;
(f[i+1][i][j]+=f[i][j][k])%=MOD;
}
}
int ans=0;
for(int j=0;j<n;j++)
for(int k=0;k<=(j-(j>0));k++)
(ans+=f[n][j][k])%=MOD;
ans=1LL*ans*3%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
}
int main(){
readData();
dp();
return 0;
}
【ARC074e】RGB sequence的更多相关文章
- 【arc074e】RGB Sequence(动态规划)
[arc074e]RGB Sequence(动态规划) 题面 atcoder 洛谷 翻译见洛谷 题解 直接考虑暴力\(dp\),设\(f[i][j][k][l]\)表示当前考虑到第\(i\)位,最后一 ...
- 【arc074e】RGB Sequence dp
Description 丰泽爷今天也在愉快地玩Minecraft! 现在丰泽爷有一块1∗N1∗N的空地,每个格子按照顺序标记为11到NN.丰泽爷想要在这块空地上铺上红石块.绿宝石块和钻石块作为 ...
- 【XSY3209】RGB Sequence
题目 传送门 解法 用\(f_{i, j, k}\)表示有\(i\)个红石块, \(j\)个绿宝石块, \(k\)个钻石块 可以转移到\(f_{p+1, j, k}\). \(f_{i, p+1,k ...
- 【arc071f】Infinite Sequence(动态规划)
[arc071f]Infinite Sequence(动态规划) 题面 atcoder 洛谷 题解 不难发现如果两个不为\(1\)的数连在一起,那么后面所有数都必须相等. 设\(f[i]\)表示\([ ...
- 【BZOJ1367】[Baltic2004]sequence 左偏树
[BZOJ1367][Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sampl ...
- 【BZOJ3043】IncDec Sequence 乱搞
[BZOJ3043]IncDec Sequence Description 给定一个长度为n的数列{a1,a2...an},每次可以选择一个区间[l,r],使这个区间内的数都加一或者都减一.问至少需要 ...
- 【C#】RGB,CMYK,HSB各种颜色表示的转换(转)
[C#]RGB,CMYK,HSB各种颜色表示的转换 一.表示颜色的方式有很多种,如RGB,CMYK,HSB,Hex等等 1.RGB:这种表示颜色由三原色构成,通过红,绿,蓝三种颜色分量的不同,组合 ...
- T89353 【BIO】RGB三角形
T89353 [BIO]RGB三角形 题解 对于这个题目有一个规律: 如果一个数列的长度为 3k+1(0<=k) 那么,这个数列最终缩放成的一个字母只和这个数列的首项,尾项有关 所以我们可以先 ...
- 【AGC025B】RGB Color
[AGC025B]RGB Color 题面描述 Link to Atcoder Link to Luogu Takahashi has a tower which is divided into \( ...
随机推荐
- 使用Zabbix的SNMP trap监控类型监控设备的一个例子
本文以监控绿盟设备为例. 1.登录被监控的设备的管理系统,配置snmptrap地址指向zabbix服务器或代理服务器. snmptrap地址也叫陷阱. 2.验证是否能在zabbix服务器或代理服务器上 ...
- 微信JS-SDK实现上传图片功能
最近在项目开发中,有一个在微信WEB项目中上传图片的需求,一开始使用了传统的<input type="file">的方式去实现,但是后面发现在使用这种传统模式时会由于手 ...
- RBC:Echo设备2020年可为亚马逊贡献100亿美元收入
BI 中文站 12 月 22 日报道 加拿大皇家银行资本市场(RBC Capital Markets)分析师马克-马哈尼(Mark Mahaney)表示,亚马逊是首批将智能音箱引进主流受众的公司之一, ...
- Beta阶段中间产物【欢迎来怼】
一.版本控制 ①Git地址:https://git.coding.net/tianjiping/Android-tianjiping.git ②check in次数:7次. ③成员代码贡献 因为阚博文 ...
- 20172321 20172333 2017-2018 暑假作业APP
20172321 20172333 2017-2018 暑假作业APP 项目介绍 项目成员 吴恒佚 20172321 严域俊 20172333 项目简介 从理论上来说,这是一个贪吃蛇游戏. <贪 ...
- t团队项目计划
团队的backlog: .用户登录网站后,可以选择是买或者卖, (1)买 点击链接,可以分类浏览商品信息,也可以按价钱筛选 (2)卖 点击链接,选择要挂出的商品种类,填写信息(名称.价格.数量等)接着 ...
- spring冲刺计划
会议召开时间表 日期 时间 内容 05/09 21:00-22:00 讨论题目(未果) 05/10 21:00-21:30 确定题目(网络助手) 05/13 21:00-21:45 讨论软件页面设计 ...
- spring冲刺第六天
昨天编写地图代码,完善地图界面,使其变得美观. 今天把地图界面初步完成,和其他团队成员的成果进行结合,整合人物和地图代码. 遇到的问题:在整合时遇到的问题比较多,今天没有整合成功.
- JS实现前端将数据导出excel
点击此跳到原文,原文有效果动图. 方法一 将table标签,包括tr.td等对json数据进行拼接,将table输出到表格上实现,这种方法的弊端在于输出的是伪excel,虽说生成xls为后缀的文件,但 ...
- 30_数据库_第30天java_jdbc_(DBUtils)_讲义
今日内容介绍 1.DBUtils 2.连接池 01DButils工具类的介绍个三个核心类 * A: DButils工具类的介绍个三个核心类 * a: 概述 * DBUtils是java编程中的数据库操 ...