有这样的问题:

给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数。

数据范围$a,b≤10^{18}$。

求解这个问题有一种方法,叫做扩展欧几里得算法(简称扩欧),其本质是一个递归求解的过程。

首先由一个前置的结论是$gcd(x,y)=gcd(y,x\%y)$。此处的$\%$为$c++$中取模操作,下同。

我们不妨设$a>b$

当$a≠0,b=0$时,则显然有$x=1,y=0$。此时$gcd(a,b)=a$。

当$b≠0$时,我们假设我们已经求出了$bx'+(b\%a)y'=gcd(a,b)$的$x'$和$y'$(这是式1),我们现在要求的是$ax+by=gcd(a,b)$。

我们对式子$1$做一些微小的变式

原式$=bx'+(b\%a)y'$

$=bx'+(a-\lfloor \frac{a}{b} \rfloor \times b)\times y'$

$=bx'+ay'-\lfloor \frac{a}{b} \rfloor \times b\times y'$

$=ay'+b(x'-\lfloor \frac{a}{b}\rfloor y')$

不难发现,$x=y'$,$y=(x'-\lfloor \frac{a}{b}\rfloor y')$就是一组符合条件的解。

然后无脑递归解决即可,代码很短,复杂度显然是$O(\log_2 a)$的。

 void exgcd(int a,int b,int &x,int &y){
if(!b) {x=; y=; return;}
exgcd(b,a%b,y,x);
y-=a/b*x;
}

下面来说下这东西能干啥

我们不难发现,我们需要求$a$在模$b$意义下的乘法逆元(前提条件,$a$与$b$互质)

我们可以执行一次$exgcd(a,b,x,y)$,然后$x$就是$a$在模$b$意义下的逆元。

证明显然:

$ax+by=1$

$ax\equiv 1(\mod b)$

当模数不是质数的时候你就会知道这东西有多重要。

【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元的更多相关文章

  1. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  2. gcd(欧几里得算法)与exgcd(扩展欧几里得算法)

    欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b)  =>  a=m*d,b=n ...

  3. 模板——扩展欧几里得算法(求ax+by=gcd的解)

    Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long ...

  4. 详解扩展欧几里得算法(扩展GCD)

    浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...

  5. 【LibreOJ】#6392. 「THUPC2018」密码学第三次小作业 / Rsa 扩展欧几里得算法

    [题目]#6392. 「THUPC2018」密码学第三次小作业 / Rsa [题意]T次询问,给定正整数c1,c2,e1,e2,N,求正整数m满足: \(c_1=m^{e_1} \ \ mod \ \ ...

  6. BUG 记录:移位运算与扩展欧几里得算法

    BUG 记录:移位运算与扩展欧几里得算法 起因 上个月就开始打算用C++写一个ECC的轮子(为什么?折磨自己呗!),奈何自己水平有点差,拖到现在才算写完底层的大数运算.在实现欧几里得算法的时候,我开始 ...

  7. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  8. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  9. 欧几里得算法与扩展欧几里得算法_C++

    先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...

随机推荐

  1. PHP的设计模式之工厂模式

    以前写代码老觉得,搞那么多乱七八槽的设计模式干嘛啊,这不是自己找罪受嘛.现在在这次的API开发过程中才晓得设计模式的厉害,真的是境界不到,永远不能领悟呀.还好坚持编码这么久,终于进入设计模式的运用了, ...

  2. 2018.12.30 bzoj3028: 食物(生成函数)

    传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21​ ...

  3. 2018.11.06 洛谷P1099 树网的核(最短路+枚举)

    传送门 之前看李煜东的书一直感觉是道神题. 然后发现这题数据范围只有300?300?300? 直接上floydfloydfloyd然后暴力就完了啊. 代码: #include<bits/stdc ...

  4. 证明抛物线焦点发出的光线经y=ax^2反射后平行于y轴

  5. c语言struct和c++struct的区别

    1.定义 c语言中struct是用户自定义数据类型(UDT),是一些变量的集合体:c++中struct是抽象数据类型(ADT),能给用户提供接口,能定义成员函数,能继承,能实现多态 2.成员权限设置 ...

  6. spring boot和mybatis入门

    [size=x-large]昨天讲了一下spring boot的入门操作相信老手已经明白入门的操作,今天我来讲下我自己的心得,可能与官方有一定差异:希望对大家能有用 一:开门见山首先看工程结构 这里的 ...

  7. 2.3.1关键字volatile与死循环

    关键字volatile的主要作用是使变量在多个线程间可见. 测试如下 package com.cky.test; /** * Created by edison on 2017/12/9. */ pu ...

  8. 2018-04-11 activity周期

    android相机开发 1.Android wifi热点连接过程 2.bindservice和AIDLhttps://blog.csdn.net/zhou_wenchong/article/detai ...

  9. (转)MYSQL远程登录权限设置

    转自:http://blog.csdn.net/zhengnz/article/details/6308773 Mysql默认关闭远程登录权限,如下操作允许用户在任意地点登录: 1. 进入mysql, ...

  10. mysql问题处理记录

    1.使用 navicate 导出 csv 文件用 excel 打开乱码 由于excel默认编码是gbk,而navicate导出数据默认编码是utf-8,因此... 解决办法: 使用WPS打开文件,然后 ...