1.为了描述SVM,需要从logistic回归开始进行学习,通过改变一些小的动作来进行支持向量机操作。在logistic回归中我们熟悉了这个假设函数以及右边的sigmoid函数,下式中z表示θ的转置乘以x,

  (1)如果我们有一个样本,其中y=1,这样的一个样本来自训练集或者测试集或者交叉验证集,我们希望h(x)能尽可能的接近1。因此我们想要正确的将样本进行分类,如果h(x)趋近于1,就意味着远大于0,即

  (2)相应的如果y=0,我们想hθ(x)=0,那么远远小于0,即

  (3)logistic regresssion的代价函数:

    

  如果y=1,当的时候,我们可以画下图:

    

  如果y=0,当,我们可以画下图:

    

  线性回归代价函数:

    

  支持向量机代价函数:

    

  与logistic回归不同的是,支持向量机并不会输出概率,而是优化上面的这个代价函数,得到一个参数θ,而支持向量机所做的是进行了一个直接的预测,预测y是0还是1.所以如果θ的转置乘以x的值大于0,那么它就会输出1;如果θ的转置乘以x的转置小于0 ,那么它就会输出0

    

  

吴恩达机器学习101:SVM优化目标的更多相关文章

  1. 吴恩达机器学习笔记48-降维目标:数据压缩与可视化(Motivation of Dimensionality Reduction : Data Compression & Visualization)

    目标一:数据压缩 除了聚类,还有第二种类型的无监督学习问题称为降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,而且它也让我们 ...

  2. ML:吴恩达 机器学习 课程笔记(Week1~2)

    吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...

  3. 吴恩达机器学习笔记47-K均值算法的优化目标、随机初始化与聚类数量的选择(Optimization Objective & Random Initialization & Choosing the Number of Clusters of K-Means Algorithm)

    一.K均值算法的优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为: 其中

  4. [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...

  5. 吴恩达机器学习笔记58-协同过滤算法(Collaborative Filtering Algorithm)

    在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这些特征训练出了每一个用户的参数.相反地,如果我们拥有用户的参数,我们可以学习得出电影的特征. 但是如果我们既没有用户的参数, ...

  6. [吴恩达机器学习笔记]13聚类K-means

    13.聚类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 13.1无监督学习简介 从监督学习到无监督学习 在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负 ...

  7. 吴恩达机器学习笔记41-支持向量机的优化目标(Optimization Objective of Support Vector Machines)

  8. 吴恩达机器学习笔记45-使用支持向量机(Using A SVM)

    本篇我们讨论如何运行或者运用SVM. 在高斯核函数之外我们还有其他一些选择,如:多项式核函数(Polynomial Kernel)字符串核函数(String kernel)卡方核函数( chi-squ ...

  9. [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...

随机推荐

  1. C++入门经典-例3.21-goto语句实现循环

    1:代码如下: // 3.21.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> usin ...

  2. 用过消息队列?Kafka?能否手写一个消息队列?懵

    是否有同样的经历?面试官问你做过啥项目,我一顿胡侃,项目利用到了消息队列,kafka,rocketMQ等等. 好的,那请开始你的表演,面试官递过一支笔:给我手写一个消息队列!!WHAT? 为了大家遇到 ...

  3. ORACLE 11GR2常用参数(含隐含参数)设置

    ORACLE 11GR2常用参数(含隐含参数)设置如下: alter system set "_PX_use_large_pool" = true scope=spfile;alt ...

  4. Java内存泄漏分析和预防

    1. 什么是内存泄漏?有什么危害 书面说法: 内存泄漏:对象已经没有被应用程序使用,但是垃圾回收器没办法移除它们,因为还在被引用着. 在Java中,内存泄漏就是存在一些被分配的对象,这些对象有下面两个 ...

  5. Git-Runoob:Git 服务器搭建

    ylbtech-Git-Runoob:Git 服务器搭建 1.返回顶部 1. Git 服务器搭建 上一章节中我们远程仓库使用了 Github,Github 公开的项目是免费的,但是如果你不想让其他人看 ...

  6. 创建策略(Creation Policy )和生命周期(Life Cycle)

    前言 在前面的介绍中我们已经知道:导入和导出的匹配成功需要ContractType,ContractName,Metadata都匹配,这里我们还要介绍一个新的东西:创建策略(creation poli ...

  7. sql server 查询存储过程返回值

    SET QUOTED_IDENTIFIER ON SET ANSI_NULLS ON GO CREATE proc [dbo].[is_yy] ) out, ), ) as begin ' begin ...

  8. LeetCode.1047-重复删除字符串中的所有相邻重复项

    这是小川的第389次更新,第419篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第251题(顺位题号是1047).给定一个小写字母的字符串S,重复删除两个相邻且相等的字母 ...

  9. Mybatis 之 SQL生成技巧

    一.增 1.<trim> 和<if>实现数据插入 <insert id="addInOrder" parameterType="XXX.mo ...

  10. python基础-并发编程之I/O模型基础

    1. I/O模型介绍 1.1 I/O模型基础 更好的理解I/O模型,需要先回顾:同步.异步.阻塞.非阻塞 同步:执行完代码后,原地等待,直至出现结果 异步:执行完代码后,不等待,继续执行其他事务(常与 ...