题意:给定一个长为n的序列,每个位置可以选择取或不取,要求构造方案使得:

1.对于前M1个约束,区间【L,R】内取的数量必须严格不少于K

2.对于后M2个约束,区间【L,R】外取的数量必须严格不少于K

3.满足所有M1+M2个约束的前提下使得取的个数最少,输出最少取的个数

n,M1,M2<=3e3

思路:做法一:

特殊的SPFA判负环的技巧见https://www.cnblogs.com/myx12345/p/6212893.html

大致说来就是用栈和初始置0两个地方

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
typedef pair<ll,ll>P;
#define N 500010
#define M 1000000
#define INF 1e9
#define fi first
#define se second
#define MP make_pair
#define pb push_back
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1
#define fors(i) for(auto i:e[x]) if(i!=p) const int MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int dx[]={-,,,};
int dy[]={,,-,}; struct edge
{
int x,y,z;
}a[N],b[N]; int head[N],vet[N],nxt[N],inq[N],dis[N],stk[N],len[N],t[N],
n,m1,m2,tot; int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} ll readll()
{
ll v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} void add(int a,int b,int c)
{
nxt[++tot]=head[a];
vet[tot]=b;
len[tot]=c;
head[a]=tot;
} void build(int k)
{
//printf("k=%d\n",k);
tot=;
rep(i,,n) head[i]=;
rep(i,,n-)
{
add(i+,i,);
add(i,i+,);
}
rep(i,,m1) add(a[i].y,a[i].x-,-a[i].z);
rep(i,,m2) add(b[i].x-,b[i].y,k-b[i].z);
add(,n,k);
add(n,,-k);
} int isok()
{
rep(i,,n) inq[i]=dis[i]=t[i]=;
int top=;
rep(i,,n)
{
top++;
stk[top]=i;
inq[i]=;
t[]=i;
}
while(top)
{
int u=stk[top];
top--;
inq[u]=;
int e=head[u];
while(e)
{
int v=vet[e];
if(dis[u]+len[e]<dis[v])
{
dis[v]=dis[u]+len[e];
if(!inq[v])
{
top++;
stk[top]=v;
inq[v]=;
t[v]++;
if(t[v]==n+) return ;
}
}
e=nxt[e];
}
}
return ;
} void solve()
{
n=read(),m1=read(),m2=read();
rep(i,,m1) a[i].x=read(),a[i].y=read(),a[i].z=read();
rep(i,,m2) b[i].x=read(),b[i].y=read(),b[i].z=read();
int l=,r=n,last=n;
while(l<=r)
{
int mid=(l+r)>>;
build(mid);
if(isok()){last=mid; r=mid-;}
else l=mid+;
}
printf("%d\n",last);
} int main()
{
//freopen("1.in","r",stdin);
int cas=read();
while(cas--) solve();
return ;
}

【gym102394A】Artful Paintings(差分约束系统,二分)的更多相关文章

  1. [CCPC2019 哈尔滨] A. Artful Paintings - 差分约束,最短路

    Description 给 \(N\) 个格子区间涂色,有两类限制条件 区间 \([L,R]\) 内至少 \(K\) 个 区间 \([L,R]\) 外至少 \(K\) 个 求最少要涂多少个格子 Sol ...

  2. 差分约束系统——POJ1275

    之前做过差分,但是没做过差分约束系统. 正好在学军机房听课讲到这道题,就顺带学了一下. 其实...就是列不等式组然后建图 作为蒟蒻,当然是不会加二分优化的啦...但是poj上还是94ms跑过了qwq ...

  3. UVA - 11090 - Going in Cycle!!(二分+差分约束系统)

    Problem  UVA - 11090 - Going in Cycle!! Time Limit: 3000 mSec Problem Description You are given a we ...

  4. UVA - 11478 - Halum(二分+差分约束系统)

    Problem  UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...

  5. UVA11478 Halum [差分约束系统]

    https://vjudge.net/problem/UVA-11478 给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的 ...

  6. UVA 11374 Halum (差分约束系统,最短路)

    题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...

  7. Halum UVA - 11478(差分约束 + 二分最小值最大化)

    题意: 给定一个有向图,每条边都有一个权值,每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后要让所有边权的最小值非负且尽量大 两个特判 1 ...

  8. UVA-11478 Halum (差分约束系统)

    题目大意:一张n个节点的有向带边权图,每次操作能任选一个节点v个一个整数d,使以v为终点的边权值都减少d,以v为起点的边权值都增加d,求若干次操作后的最小边权值的非负最大值. 题目分析:用sum[i] ...

  9. 【POJ 1275】 Cashier Employment(差分约束系统的建立和求解)

    [POJ 1275] Cashier Employment(差分约束系统的建立和求解) Cashier Employment Time Limit: 1000MS   Memory Limit: 10 ...

  10. [HDU 1529]Cashier Employment(差分约束系统)

    [HDU 1529]Cashier Employment(差分约束系统) 题面 有一个超市,在24小时对员工都有一定需求量,表示为\(r_i\),意思为在i这个时间至少要有i个员工,现在有n个员工来应 ...

随机推荐

  1. Linux 命令 watch 监测命令的运行结果

    watch 命令周期性地执行命令,全屏显示输出命令.watch命令可以监测一个命令的运行结果 命令参数 -n, --interval 设置间隔时间.默认情况下,watch 每隔 2 秒执行一次命令. ...

  2. Oozie 3.3.1安装

    软件安装路径 软件名称 版本 安装路径 jdk 1.6.0_12 /usr/java/jdk1.6.0_12 maven 3.1.0 /usr/local//apache-maven-3.1.0 Oo ...

  3. adb 设置安卓连接wifi

    一. 修改wpa_supplicant.conf文件 1.1. 获得root权限 adb root 1.2. 将wpa_supplicant.conf拷贝到你的电脑 adb pull /data/mi ...

  4. 初识MySQL <一>

    创建一个 表 create table student( id int(10) not null unique auto_increment primary key, name varchar(30) ...

  5. JavaScript数组知识

    JavaScript数组知识 <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  6. PHP常用代码片段

    /** * 高效判断远程文件是否存在 * @param $file * @return bool 存在返回 true 不存在或者其他原因返回false */ function remoteFileEx ...

  7. C#获取主机信息

    获取主机信息 最近需要做一个配合集控系统收集各个终端设备的一些信息,大致需要收集终端设备的硬件信息,CPU.内存以及硬盘使用率等信息.网上查看了一番,使用WMI来获取这些信息是最方便的.实现代码如下: ...

  8. 使用QtXlsx来读写excel文件

    概述:QtXlsx是功能非常强大和使用非常方便的操作excel类库.包括对excel数据读写.excel数据格式设置及在excel里面根据数据生成各种图表. 下面重点介绍如何安装和使用QtXlsx. ...

  9. 自动内存管理机制之java内存区域与内存溢出异常

    一.运行时数据区域 java虚拟机所管理的内存会包括下面的几个部分: 1.程序计数器:是一块较小的内存空间,可以看做是当前线程所执行的字节码的行号指示器.一般情况下,字节码解释器工作的时候就是通过改变 ...

  10. css阴影——box-shadow

    1.语法 box-shadow: h-shadow v-shadow blur spread color inset;      box-shadow: 水平阴影  垂直阴影 模糊距离 阴影大小 阴影 ...