http://blog.csdn.net/pipisorry/article/details/54020333

Networks算法Algorithms

最短路径Shortest Paths

shortest_path

all_shortest_paths

shortest_path_length

average_shortest_path_length

has_path

Advanced Interface

Dense Graphs

A* Algorithm

[Shortest Paths]

简单路径Simple Paths

all_simple_paths(G, source, target[, cutoff]) Generate all simple paths in the graph G from source to target.
shortest_simple_paths(G, source, target[, ...]) Generate all simple paths in the graph G from source to target, starting from shortest ones.

Note:nx.all_simple_paths只能迭代一次。

链接分析Link Analysis

PageRank Hits

[Link Analysis]

链接预测Link Prediction

链接预测算法

resource_allocation_index(G[, ebunch]) Compute the resource allocation index of all node pairs in ebunch.
jaccard_coefficient(G[, ebunch]) Compute the Jaccard coefficient of all node pairs in ebunch.
adamic_adar_index(G[, ebunch]) Compute the Adamic-Adar index of all node pairs in ebunch.
preferential_attachment(G[, ebunch]) Compute the preferential attachment score of all node pairs in ebunch.
cn_soundarajan_hopcroft(G[, ebunch, community]) Count the number of common neighbors of all node pairs in ebunch using community information.
ra_index_soundarajan_hopcroft(G[, ebunch, ...]) Compute the resource allocation index of all node pairs in ebunch using community information.
within_inter_cluster(G[, ebunch, delta, ...]) Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.

Note: 返回的基本都是iterator of 3-tuples in the form (u, v, p)。iterator只能迭代一次,否则为空了。

不指定ebunch的话就是计算所有没有边的点。If ebunchis None then all non-existent edges in the graph will be used.

单纯cn个数的计算

def commonNeighbor(G, ebunch=None):
    '''
    compute num of common neighbor
    '''
    import networkx as nx

    if ebunch is None:
        ebunch = nx.non_edges(G)

    def predict(u, v):
        cnbors = list(nx.common_neighbors(G, u, v))
        return len(cnbors)

    return ((u, v, predict(u, v)) for u, v in ebunch)

[Link Prediction]

组件Components

connectivity连通性

连通子图Connected components

is_connected(G) Return True if the graph is connected, false otherwise.
number_connected_components(G) Return the number of connected components.
connected_components(G) Generate connected components.
connected_component_subgraphs(G[, copy]) Generate connected components as subgraphs.
node_connected_component(G, n) Return the nodes in the component of graph containing node n.

连通子图计算示例

from networkx.algorithms import traversal, components

weighted_edges = pd.read_csv(os.path.join(CWD, 'middlewares/network_reid.txt'), sep=',',
                             header=None).values.tolist()

g = nx.Graph()
g.add_weighted_edges_from(weighted_edges)
# print('#connected_components of g: {}'.format(nx.number_connected_components(g)))

component_subgs = components.connected_component_subgraphs(g)
for component_subg in component_subgs:
])

Strong connectivity

Weak connectivity

Attracting components

Biconnected components

Semiconnectedness

[Components]

Connectivity

Connectivity and cut algorithms

[Connectivity]

遍历Traversal

深度优先遍历

[Depth First Search]

广度优先遍历

[Breadth First Search]

边的深度优先遍历

[Depth First Search on Edges]

[Traversal]

皮皮blog

networkx算法示例

使用networkx计算所有路径及路径距离

[jupyter]

[python—networkx:求图的平均路径长度并画出直方图]

社区发现

[复杂网络社区结构发现算法-基于python networkx clique渗透算法 ]

皮皮blog

from: http://blog.csdn.net/pipisorry/article/details/54020333

ref: [Algorithms]

[Networkx Reference]*[NetworkX documentation]*[doc NetworkX Examples]*[NetworkX Home]

python复杂网络库networkx:算法的更多相关文章

  1. python复杂网络库networkx:基础

    http://blog.csdn.net/pipisorry/article/details/49839251 其它复杂网络绘图库 [SNAP for python] [ArcGIS,Python,网 ...

  2. python复杂网络库networkx:绘图draw

    http://blog.csdn.net/pipisorry/article/details/54291831 networkx使用matplotlib绘制函数 draw(G[, pos, ax, h ...

  3. Python 并发网络库

    Python 并发网络库 Tornado VS Gevent VS Asyncio Tornado:并发网络库,同时也是一个 web 微框架 Gevent:绿色线程(greenlet)实现并发,猴子补 ...

  4. python复杂网络分析库NetworkX

    NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析.仿真建模等工作.networkx支持创建简单无向图.有向图和多重 ...

  5. Python常用的库简单介绍一下

    Python常用的库简单介绍一下fuzzywuzzy ,字符串模糊匹配. esmre ,正则表达式的加速器. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable ...

  6. 使用python网络库下载

    下载1000次网页资源 1,普通循环方式下载1000次,非常慢 #!/usr/bin/python # -*- coding: utf-8 -*- import sys import os impor ...

  7. python基于协程的网络库gevent、eventlet

    python网络库也有了基于协程的实现,比较著名的是 gevent.eventlet 它两之间的关系可以参照 Comparing gevent to eventlet, 本文主要简单介绍一下event ...

  8. day-9 sklearn库和python自带库实现最近邻KNN算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  9. python爬虫#网络请求requests库

    中文文档 http://docs.python-requests.org/zh_CN/latest/user/quickstart.html requests库 虽然Python的标准库中 urlli ...

随机推荐

  1. [翻译] softmax和softmax_cross_entropy_with_logits的区别

    翻译自:https://stackoverflow.com/questions/34240703/whats-the-difference-between-softmax-and-softmax-cr ...

  2. transform做2d和3d变形(css动画一)

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 有段时间我是没理清transform.translate.transition和animation之间的关 ...

  3. Java集合框架的四个接口

    接口 [四个接口  collection  list  set  map 的区别] collection 存储不唯一的无序的数据 list 存储有序的不唯一的数据 set   存储无序的唯一的数据 m ...

  4. java中的多态案例

    多态性实际上有两种: 1.方法的多态性: 1.1方法重载:相同的方法名,会根据传入的参数的类型和个数不同执行不同的方法 1.2方法覆写:同一个方法名称,会根据子类的不同实现不同的功能 2.对象的多态性 ...

  5. [LeetCode] Lonely Pixel II 孤独的像素之二

    Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...

  6. java小白设计模式之观察者模式

    观察者模式: 对象之间多对一依赖的一种设计方案,被依赖对象为Subject(一),依赖对象为Observer(多),Subject通知Observer变化直接代码: package com.wz.tw ...

  7. Ubuntu系统安装Pyenv

    安装Pyenv curl -L https://raw.githubusercontent.com/yyuu/pyenv-installer/master/bin/pyenv-installer | ...

  8. mysql-5.7.18-winx64 免安装版配置

    如题,最新的都是只有免安装版的,可以官网下载zip的压缩包. 下载后解压,如下 下面就开始配置 1.在path中添加环境变量 ;D:\coding\mysql-5.7.18-winx64\bin; ← ...

  9. [Codeforces 863B]Kayaking

    Description Vadim is really keen on travelling. Recently he heard about kayaking activity near his t ...

  10. [USACO 08JAN]Haybale Guessing

    Description The cows, who always have an inferiority complex about their intelligence, have a new gu ...