python复杂网络库networkx:算法
http://blog.csdn.net/pipisorry/article/details/54020333
Networks算法Algorithms
最短路径Shortest Paths
简单路径Simple Paths
all_simple_paths(G, source, target[, cutoff]) |
Generate all simple paths in the graph G from source to target. |
shortest_simple_paths(G, source, target[, ...]) |
Generate all simple paths in the graph G from source to target, starting from shortest ones. |
Note:nx.all_simple_paths只能迭代一次。
链接分析Link Analysis
PageRank Hits
链接预测Link Prediction
链接预测算法
resource_allocation_index(G[, ebunch]) |
Compute the resource allocation index of all node pairs in ebunch. |
jaccard_coefficient(G[, ebunch]) |
Compute the Jaccard coefficient of all node pairs in ebunch. |
adamic_adar_index(G[, ebunch]) |
Compute the Adamic-Adar index of all node pairs in ebunch. |
preferential_attachment(G[, ebunch]) |
Compute the preferential attachment score of all node pairs in ebunch. |
cn_soundarajan_hopcroft(G[, ebunch, community]) |
Count the number of common neighbors of all node pairs in ebunch using community information. |
ra_index_soundarajan_hopcroft(G[, ebunch, ...]) |
Compute the resource allocation index of all node pairs in ebunch using community information. |
within_inter_cluster(G[, ebunch, delta, ...]) |
Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch. |
Note: 返回的基本都是iterator of 3-tuples in the form (u, v, p)。iterator只能迭代一次,否则为空了。
不指定ebunch的话就是计算所有没有边的点。If ebunchis None then all non-existent edges in the graph will be used.
单纯cn个数的计算
def commonNeighbor(G, ebunch=None):
'''
compute num of common neighbor
'''
import networkx as nx
if ebunch is None:
ebunch = nx.non_edges(G)
def predict(u, v):
cnbors = list(nx.common_neighbors(G, u, v))
return len(cnbors)
return ((u, v, predict(u, v)) for u, v in ebunch)
组件Components
connectivity连通性
连通子图Connected components
is_connected(G) |
Return True if the graph is connected, false otherwise. |
number_connected_components(G) |
Return the number of connected components. |
connected_components(G) |
Generate connected components. |
connected_component_subgraphs(G[, copy]) |
Generate connected components as subgraphs. |
node_connected_component(G, n) |
Return the nodes in the component of graph containing node n. |
连通子图计算示例
from networkx.algorithms import traversal, components
weighted_edges = pd.read_csv(os.path.join(CWD, 'middlewares/network_reid.txt'), sep=',',
header=None).values.tolist()
g = nx.Graph()
g.add_weighted_edges_from(weighted_edges)
# print('#connected_components of g: {}'.format(nx.number_connected_components(g)))
component_subgs = components.connected_component_subgraphs(g)
for component_subg in component_subgs:
])
Strong connectivity
Weak connectivity
Attracting components
Biconnected components
Semiconnectedness
Connectivity
Connectivity and cut algorithms
遍历Traversal
深度优先遍历
广度优先遍历
边的深度优先遍历
networkx算法示例
使用networkx计算所有路径及路径距离
[jupyter]
[python—networkx:求图的平均路径长度并画出直方图]
社区发现
[复杂网络社区结构发现算法-基于python networkx clique渗透算法 ]
from: http://blog.csdn.net/pipisorry/article/details/54020333
ref: [Algorithms]
[Networkx Reference]*[NetworkX documentation]*[doc NetworkX Examples]*[NetworkX Home]
python复杂网络库networkx:算法的更多相关文章
- python复杂网络库networkx:基础
http://blog.csdn.net/pipisorry/article/details/49839251 其它复杂网络绘图库 [SNAP for python] [ArcGIS,Python,网 ...
- python复杂网络库networkx:绘图draw
http://blog.csdn.net/pipisorry/article/details/54291831 networkx使用matplotlib绘制函数 draw(G[, pos, ax, h ...
- Python 并发网络库
Python 并发网络库 Tornado VS Gevent VS Asyncio Tornado:并发网络库,同时也是一个 web 微框架 Gevent:绿色线程(greenlet)实现并发,猴子补 ...
- python复杂网络分析库NetworkX
NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析.仿真建模等工作.networkx支持创建简单无向图.有向图和多重 ...
- Python常用的库简单介绍一下
Python常用的库简单介绍一下fuzzywuzzy ,字符串模糊匹配. esmre ,正则表达式的加速器. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable ...
- 使用python网络库下载
下载1000次网页资源 1,普通循环方式下载1000次,非常慢 #!/usr/bin/python # -*- coding: utf-8 -*- import sys import os impor ...
- python基于协程的网络库gevent、eventlet
python网络库也有了基于协程的实现,比较著名的是 gevent.eventlet 它两之间的关系可以参照 Comparing gevent to eventlet, 本文主要简单介绍一下event ...
- day-9 sklearn库和python自带库实现最近邻KNN算法
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- python爬虫#网络请求requests库
中文文档 http://docs.python-requests.org/zh_CN/latest/user/quickstart.html requests库 虽然Python的标准库中 urlli ...
随机推荐
- [翻译] softmax和softmax_cross_entropy_with_logits的区别
翻译自:https://stackoverflow.com/questions/34240703/whats-the-difference-between-softmax-and-softmax-cr ...
- transform做2d和3d变形(css动画一)
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 有段时间我是没理清transform.translate.transition和animation之间的关 ...
- Java集合框架的四个接口
接口 [四个接口 collection list set map 的区别] collection 存储不唯一的无序的数据 list 存储有序的不唯一的数据 set 存储无序的唯一的数据 m ...
- java中的多态案例
多态性实际上有两种: 1.方法的多态性: 1.1方法重载:相同的方法名,会根据传入的参数的类型和个数不同执行不同的方法 1.2方法覆写:同一个方法名称,会根据子类的不同实现不同的功能 2.对象的多态性 ...
- [LeetCode] Lonely Pixel II 孤独的像素之二
Given a picture consisting of black and white pixels, and a positive integer N, find the number of b ...
- java小白设计模式之观察者模式
观察者模式: 对象之间多对一依赖的一种设计方案,被依赖对象为Subject(一),依赖对象为Observer(多),Subject通知Observer变化直接代码: package com.wz.tw ...
- Ubuntu系统安装Pyenv
安装Pyenv curl -L https://raw.githubusercontent.com/yyuu/pyenv-installer/master/bin/pyenv-installer | ...
- mysql-5.7.18-winx64 免安装版配置
如题,最新的都是只有免安装版的,可以官网下载zip的压缩包. 下载后解压,如下 下面就开始配置 1.在path中添加环境变量 ;D:\coding\mysql-5.7.18-winx64\bin; ← ...
- [Codeforces 863B]Kayaking
Description Vadim is really keen on travelling. Recently he heard about kayaking activity near his t ...
- [USACO 08JAN]Haybale Guessing
Description The cows, who always have an inferiority complex about their intelligence, have a new gu ...