机器学习与神经网络的关系:

机器学习是目的,神经网络是算法。神经网络是实现机器学习的一种方法,平行于SVM。

常用的两种工具:svm tool、libsvm

SVM分为SVC和SVR,svc是专门用来分类的,svr是用来作回归的

注:matlab自带的svm工具箱无回归预测功能

函数介绍:http://blog.sina.com.cn/s/blog_6c76c0890100w1zm.html

libsvm参数介绍:http://blog.csdn.net/changyuanchn/article/details/7540014

    clear;
N = 50;
n=2*N;
randn('state',6);
x1 = randn(2,N)
y1 = ones(1,N);
x2 = 5+randn(2,N);
y2 = -ones(1,N);
figure;
plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.');
axis([-3 8 -3 8]);
title('C-SVC')
hold on;
X1 = [x1,x2];
Y1 = [y1,y2];
X=X1';
Y=Y1';
C=Inf;
ker='linear';
global p1 p2
p1=3;
p2=1; %命令
[nsv alpha bias] = svc(X,Y,ker,C) %训练函数
predictedY = svcoutput(X,Y,X,ker,alpha,bias) %输入预测函数
err = svcerror(trnX,trnY,tstX,tstY,ker,alpha,bias) %分类函数,准确率
svcplot(X,Y,ker,alpha,bias) %画图

  

libsvm使用(回归预测):

close all;
clear;
clc;
format compact; % 生成待回归的数据
x = (-1:0.1:1)';
y = -x.^2; % 建模回归模型
model = libsvmtrain(y,x,'-s 3 -t 2 -c 2.2 -g 2.8 -p 0.01'); % 利用建立的模型看其在训练集合上的回归效果
[py,mse,devalue] = libsvmpredict(y,x,model);
figure;
plot(x,y,'o');
hold on;
plot(x,py,'r*');
legend('原始数据','回归数据');
grid on; % 进行预测
testx = [1.1,1.2,1.3]';
display('真实数据')
testy = -testx.^2 [ptesty,tmse,detesvalue] = libsvmpredict(testy,testx,model);
display('预测数据');
ptesty

  

[matlab]机器学习及SVM工具箱学习笔记的更多相关文章

  1. 机器学习框架ML.NET学习笔记【4】多元分类之手写数字识别

    一.问题与解决方案 通过多元分类算法进行手写数字识别,手写数字的图片分辨率为8*8的灰度图片.已经预先进行过处理,读取了各像素点的灰度值,并进行了标记. 其中第0列是序号(不参与运算).1-64列是像 ...

  2. 机器学习框架ML.NET学习笔记【3】文本特征分析

    一.要解决的问题 问题:常常一些单位或组织召开会议时需要录入会议记录,我们需要通过机器学习对用户输入的文本内容进行自动评判,合格或不合格.(同样的问题还类似垃圾短信检测.工作日志质量分析等.) 处理思 ...

  3. 机器学习框架ML.NET学习笔记【2】入门之二元分类

    一.准备样本 接上一篇文章提到的问题:根据一个人的身高.体重来判断一个人的身材是否很好.但我手上没有样本数据,只能伪造一批数据了,伪造的数据比较标准,用来学习还是蛮合适的. 下面是我用来伪造数据的代码 ...

  4. 机器学习框架ML.NET学习笔记【1】基本概念与系列文章目录

    一.序言 微软的机器学习框架于2018年5月出了0.1版本,2019年5月发布1.0版本.期间各版本之间差异(包括命名空间.方法等)还是比较大的,随着1.0版发布,应该是趋于稳定了.之前在园子里也看到 ...

  5. 机器学习框架ML.NET学习笔记【5】多元分类之手写数字识别(续)

    一.概述 上一篇文章我们利用ML.NET的多元分类算法实现了一个手写数字识别的例子,这个例子存在一个问题,就是输入的数据是预处理过的,很不直观,这次我们要直接通过图片来进行学习和判断.思路很简单,就是 ...

  6. 机器学习框架ML.NET学习笔记【6】TensorFlow图片分类

    一.概述 通过之前两篇文章的学习,我们应该已经了解了多元分类的工作原理,图片的分类其流程和之前完全一致,其中最核心的问题就是特征的提取,只要完成特征提取,分类算法就很好处理了,具体流程如下: 之前介绍 ...

  7. 机器学习框架ML.NET学习笔记【7】人物图片颜值判断

    一.概述 这次要解决的问题是输入一张照片,输出人物的颜值数据. 学习样本来源于华南理工大学发布的SCUT-FBP5500数据集,数据集包括 5500 人,每人按颜值魅力打分,分值在 1 到 5 分之间 ...

  8. 机器学习框架ML.NET学习笔记【8】目标检测(采用YOLO2模型)

    一.概述 本篇文章介绍通过YOLO模型进行目标识别的应用,原始代码来源于:https://github.com/dotnet/machinelearning-samples 实现的功能是输入一张图片, ...

  9. 机器学习框架ML.NET学习笔记【9】自动学习

    一.概述 本篇我们首先通过回归算法实现一个葡萄酒品质预测的程序,然后通过AutoML的方法再重新实现,通过对比两种实现方式来学习AutoML的应用. 首先数据集来自于竞赛网站kaggle.com的UC ...

随机推荐

  1. 用cocos2d-html5做的消除类游戏《英雄爱消除》(1)——系统主菜单

    系统主菜单如下图所示: 首先,介绍下这个主菜单,它包含了一个动画logo以及一个按钮选项,动画logo每隔1秒钟切换一张图片,点击相应的按钮选项会切换不同的游戏场景. 下面看下这个界面的源码: /** ...

  2. HDU - 5703 Desert 【找规律】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5703 题意 给出一杯容量为N的水 每次至少喝1个单位 有多少种不同的方式喝完 比如 给出3 就有4种方 ...

  3. Sql Server2008——存储过程编程简单例子

    主要介绍: 存储过程的定义方法及其使用方法. 实例介绍: 1 创建学生表Student create database Stu use Stu go CREATE TABLE Student ( Sn ...

  4. 【leetcode刷题笔记】3Sum Closest

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  5. spring装配机制

    spring容器创建bean并通过DI(依赖注入)来协调他们之间的关系,他有三种装配机制: 1. 在XML中显式配置 2. 在Java文件中显式配置 3. 隐式的bean发现机制(组件扫描)和自动装配 ...

  6. mini2440移植uboot 2011.03(上)

    参考博文: <u-boot-2011.03在mini2440/micro2440上的移植> 本来我想移植最新版的uboot,但是移植却不太成功,所以先模仿他人的例子重新执行一遍,对uboo ...

  7. 使用mongify将sqlserver数据导入到mongodb

    最近需要将sqlserver数据导入到mongodb中,在github上搜了一圈,发现两个项目有点适合 mongify sql2mongodb 先试了下sql2mongodb(有个好名字果然有好处啊) ...

  8. JAVA- 数据库连接池原理

    第一次Java程序要在MySQL中执行一条语句,那么就必须建立一个Connection对象,代表了与MySQL数据库的连接通过直接发送你要执行的SQL语句之后,就会调用Connection.close ...

  9. 英语发音规则---Z字母

    英语发音规则---Z字母 一.总结 一句话总结:字母Z的名称zed /zed/,美式英语的称zee /zi:/,少数方言(如香港)读izzard /'izəɹd/. 1.字母Z在单词中发[z]? pu ...

  10. gethub的安装

    下载地址: windows的下载地址 https://gitforwindows.org/ 一.安装 win下的安装注意要点: 1.环境变量 2.文件结束符如何处理(windows下/r/n,linu ...