CF 979D Kuro and GCD and XOR and SUM(异或 Trie)

给出q(<=1e5)个操作。操作分两种,一种是插入一个数u(<=1e5),另一种是给出三个数x,k,s(<=1e5),求当前所有u中满足,k|u,x+u<=s,且\(x\oplus u\)最大的u。

做法好神啊。关于异或的问题有一种常见做法,就是利用01trie来查找在一堆数里面,哪个数与x的异或值最大。这道题就是这个思路。如果去掉k必须整除v这个条件,那么就转化成了上一个问题(只不过有最大值的限制,怎么解决具体看代码)。

这道题的做法非常神奇。我们建1e5个Trie,第i个Trie中插入值为i的倍数的数。这样,查询x,k,s时,只要查询第k个Trie即可,因为里面的数一定满足k|v。插入时要遍历u的所有因数si,然后将u插入第si个Trie。

注意,异或运算是在尾部对齐的,但是要在Trie上贪心,所以必须在插入和查询的数前补零,使他们长度相同。

分析一波复杂度:

  • 预处理:我们需要预处理出u的因数。u的最大值为Max=1e5。用类似筛法的方法,时间复杂度是\(O(Max(1+\frac{1}{2}+\frac{1}{3}...+\frac{1}{Max}))=O(MaxInMax)\)。
  • 查询:就是Trie上的查询,总时间复杂度为\(O(qlog_2Max)\)。
  • 插入:一个数最多只有\(log_2(Max)\)个因数(\(2*10^9\)内因数最多的数之一是1837836000,有1536个因数),所以总的时间复杂度为\(O(qlog^2_2(Max))\)。
  • 空间复杂度:最多插入\(qlog_2(Max)\)个数,因此空间复杂度为\(qlog_2^2(Max)\)。

果然只能膜拜膜拜。

#include <cstdio>
#include <vector>
using namespace std; const int maxnum=1e5+5, maxq=1e5+5, maxn=maxq*17*17, INF=1e9;
//maxnum指插入的数的最大值 maxq指查询的最多数目
//maxn指结点的最多数目(=maxq*插入几个trie*插入数的二进制长度)
int s[maxn][2], minm[maxn], v[maxn], tot;
int q, root[maxnum], use[maxnum];
vector<int> div[maxnum]; void init(){
for (int i=1; i<maxnum; ++i)
for (int j=i; j<maxnum; j+=i)
div[j].push_back(i);
} //把x插到对应的trie里,注意维护子树中的最小数 l:处理到从左到右第几位
void insert(int &now, int x, int l){
if (!now){ now=++tot; minm[now]=INF; }
minm[now]=min(minm[now], x);
if (l==-1){ v[now]+=x; return; }
if ((x>>l)&1) insert(s[now][1], x, l-1);
else insert(s[now][0], x, l-1);
} //要找到v<=lim,并且x^v尽量大(贪心)。函数返回v
//注意由于没有删除操作,路径底下一定有点。
int query(int now, int x, int lim, int l){ //l:第几位
if (l==-1) return v[now];
int s0=s[now][0], s1=s[now][1];
if (!s0||minm[s0]>lim) return query(s[now][1], x, lim, l-1);
if (!s1||minm[s1]>lim) return query(s[now][0], x, lim, l-1);
if ((x>>l)&1) return query(s[now][0], x, lim, l-1);
else return query(s[now][1], x, lim, l-1);
} int main(){
init();
scanf("%d", &q); int op, x, k, s;
for (int i=0; i<q; ++i){
scanf("%d", &op);
if (op==1){
scanf("%d", &x);
if (use[x]) continue; use[x]=1;
for (int j=0; j<div[x].size(); ++j)
insert(root[div[x][j]], x, 18);
} else {
scanf("%d%d%d", &x, &k, &s);
if (x%k||!minm[root[k]]||minm[root[k]]+x>s) puts("-1"); //注意可能没有一个数
else printf("%d\n", query(root[k], x, s-x, 18)); //保证一定有解
}
}
return 0;
}

CF 979D Kuro and GCD and XOR and SUM(异或 Trie)的更多相关文章

  1. Codeforces 979 D. Kuro and GCD and XOR and SUM(异或和,01字典树)

    Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u ...

  2. codeforces 979D Kuro and GCD and XOR and SUM

    题意: 给出两种操作: 1.添加一个数字x到数组. 2.给出s,x,k,从数组中找出一个数v满足gcd(x,k) % v == 0 && x + v <= s && ...

  3. CodeForces 979 D Kuro and GCD and XOR and SUM

    Kuro and GCD and XOR and SUM 题意:给你一个空数组. 然后有2个操作, 1是往这个数组里面插入某个值, 2.给你一个x, k, s.要求在数组中找到一个v,使得k|gcd( ...

  4. D. Kuro and GCD and XOR and SUM

    Kuro is currently playing an educational game about numbers. The game focuses on the greatest common ...

  5. CodeForces979D:Kuro and GCD and XOR and SUM(Trie树&指针&Xor)

    Kuro is currently playing an educational game about numbers. The game focuses on the greatest common ...

  6. cf round 482D Kuro and GCD and XOR and SUM

    题意: 开始有个空集合,现在有两种操作: $(1,x)$:给集合加一个数$x$,$x \leq 10^5$; $(2,x,k,s)$:在集合中找一个$a$,满足$a \leq s-x$,而且$k|gc ...

  7. Codeforces Round #482 (Div. 2) : Kuro and GCD and XOR and SUM (寻找最大异或值)

    题目链接:http://codeforces.com/contest/979/problem/D 参考大神博客:https://www.cnblogs.com/kickit/p/9046953.htm ...

  8. cf979d Kuro and GCD and XOR and SUM

    set做法 正解是trie-- 主要是要学会 \(a\ \mathrm{xor}\ b \leq a+b\) 这种操作 #include <iostream> #include <c ...

  9. 【Trie】【枚举约数】Codeforces Round #482 (Div. 2) D. Kuro and GCD and XOR and SUM

    题意: 给你一个空的可重集,支持以下操作: 向其中塞进一个数x(不超过100000), 询问(x,K,s):如果K不能整除x,直接输出-1.否则,问你可重集中所有是K的倍数的数之中,小于等于s-x,并 ...

随机推荐

  1. NET 平台下的WebService 简单使用

    一句话理解:提供可供外部访问的方法,实现跨平台访问 注意: 在客户端是添加“服务引用”,而不是引用 当服务端更新了服务之后,在客户端,一定也要“更新服务” 当要执行异常调用时,要在前台.aspx的头部 ...

  2. Oracle使用hs odbc连接mssql2008

    1.创建odbc 2.在 product\11.2.0\dbhome_1\hs\admin\  下拷贝initdg4odbc,把名字改为initcrmsql(init+所建odbc的名称) HS_FD ...

  3. IDEA 安装完码云插件,运行报“Cannot run program "xxx":CreateProcess error=2,系统找不到指定的文件”

    错误:Cannot run program "E:\Program Files\Git\bin\git.exe":CreateProcess error=2,系统找不到指定的文件 ...

  4. 开发人员需要具备的DBA技术

    背景 在一些小公司或者部门里,通常很少有专门的DBA职位.这时候就需要我们这些程序员充当业余DBA的作用,去监测和维护数据库性能.本文的目的是帮助非DBA专业的开发人员如何定位和解决日常出现数据库问题 ...

  5. Chrome_01_点击 Google搜索结果在新的页面打开

    方法一:Ctrl + 左键 Chrome浏览器中,通过 Ctrl + 左键 ,是在新标签中打开的,通过 Shift + 左键 ,是在新窗口中打开的. 方法二: 1.登录 Google 2.进入下面的设 ...

  6. CI中site_url和base_url的区别

    你若使用site_url("test/php/1");则实际url为 http://domain.com/index.php/test/php/1 若使用base_url(&quo ...

  7. Wannafly #4 F 线路规划

    数据范围252501 劲啊 Q国的监察院是一个神秘的组织. 这个组织掌握了整个Q国的地下力量,监察着Q国的每一个人. 监察院一共有N个成员,每一个成员都有且仅有1个直接上司,而他只听从其上直接司的命令 ...

  8. 1068 Find More Coins (30)(30 分)

    Eva loves to collect coins from all over the universe, including some other planets like Mars. One d ...

  9. bzoj 3514: GERALD07加强版 lct+可持久化线段树

    题目大意: N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解: 这道题考试的时候没想出来 于是便爆炸了 结果今天下午拿出昨天准备的题表准备做题的时候 题表里就有这题 ...

  10. poj 2187 Beauty Contest —— 旋转卡壳

    题目:http://poj.org/problem?id=2187 学习资料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...