谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类。

下载地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip

下载完解压后,得到几个文件:

其中的classify_image_graph_def.pb 文件就是训练好的Inception-v3模型。

imagenet_synset_to_human_label_map.txt是类别文件。

随机找一张图片:如

对这张图片进行识别,看它属于什么类?

代码如下:先创建一个类NodeLookup来将softmax概率值映射到标签上。

然后创建一个函数create_graph()来读取模型。

最后读取图片进行分类识别:

# -*- coding: utf-8 -*-

import tensorflow as tf
import numpy as np
import re
import os model_dir='D:/tf/model/'
image='d:/cat.jpg' #将类别ID转换为人类易读的标签
class NodeLookup(object):
def __init__(self,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path):
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'[n\d]*[ \S,]*')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
uid = parsed_items[0]
human_string = parsed_items[2]
uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id] #读取训练好的Inception-v3模型来创建graph
def create_graph():
with tf.gfile.FastGFile(os.path.join(
model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='') #读取图片
image_data = tf.gfile.FastGFile(image, 'rb').read() #创建graph
create_graph() sess=tf.Session()
#Inception-v3模型的最后一层softmax的输出
softmax_tensor= sess.graph.get_tensor_by_name('softmax:0')
#输入图像数据,得到softmax概率值(一个shape=(1,1008)的向量)
predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})
#(1,1008)->(1008,)
predictions = np.squeeze(predictions) # ID --> English string label.
node_lookup = NodeLookup()
#取出前5个概率最大的值(top-5)
top_5 = predictions.argsort()[-5:][::-1]
for node_id in top_5:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score)) sess.close()

最后输出:

tiger cat (score = 0.40316)
Egyptian cat (score = 0.21686)
tabby, tabby cat (score = 0.21348)
lynx, catamount (score = 0.01403)
Persian cat (score = 0.00394)

tensorflow 1.0 学习:用别人训练好的模型来进行图像分类的更多相关文章

  1. 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署

    本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...

  2. 三分钟快速上手TensorFlow 2.0 (上)——前置基础、模型建立与可视化

    本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(sha ...

  3. tensorflow 1.0 学习:模型的保存与恢复(Saver)

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  4. tensorflow 1.0 学习:用CNN进行图像分类

    tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1 ...

  5. tensorflow 1.0 学习:模型的保存与恢复

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  6. TensorFlow 同时调用多个预训练好的模型

    在某些任务中,我们需要针对不同的情况训练多个不同的神经网络模型,这时候,在测试阶段,我们就需要调用多个预训练好的模型分别来进行预测. 调用单个预训练好的模型请点击此处 弄明白了如何调用单个模型,其实调 ...

  7. tensorflow 2.0 学习(四)

    这次的mnist学习加入了测试集,看看学习的准确率,代码如下 # encoding: utf-8 import tensorflow as tf import matplotlib.pyplot as ...

  8. Tensorflow 2.0 学习资源

    我从换了新工作才开始学习使用Tensorflow,感觉实在太难用了,sess和graph对 新手很不友好,各种API混乱不堪,这些在tf2.0都有了重大改变,2.0大量使用keras的 api,初步使 ...

  9. tensorflow 1.0 学习:十图详解tensorflow数据读取机制

    本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...

随机推荐

  1. day20.序列化模块

    参考云游道士:https://www.cnblogs.com/yyds/p/6563608.html 1.什么是序列化 序列化就是将字典,数字等数据类型转换为字符串数据类型 所说的序列就是字符串 2. ...

  2. day19其他模块

    collections模块 详细内容 http://www.cnblogs.com/Eva-J/articles/7291842.html 1.namedtuple: 生成可以使用名字来访问元素内容的 ...

  3. C语言--第五次作业--指针

    1.本章学习总结 1.1 思维导图 1.2本章学习体会及代码量学习体会 1.2.1学习体会 没想到都已经学习完C语言的灵魂-指针的内容了(当然也是C里面最难学习的内容了).虽然在之前就有听学习进度比较 ...

  4. linux 访问到对应的接口

    8080端口已经打开. 8080端口已被监听 telnet 192.168.163.128 8080   成功 也可以将防火墙关闭,这样所有的接口已经开放,不会再被拦截.这种情况下只要8080端口被某 ...

  5. 决AndroidStudio 安卓模拟器安装在D盘问题

    决AndroidStudio 安卓模拟器安装在D盘问题 转 http://www.cnblogs.com/LiuDanK/articles/10106473.html 大家知道安卓的模拟器位置默认是放 ...

  6. Git ignore文件的用法

    这周为了往自己个人代码仓库里囤货,把在公司写的一些东西上传到了自己的GitHub代码仓库,手抖把测试用的日志也一并上传了.上传没多长时间就被运维找上门了,说commit里包含内网相关信息,要求删除.当 ...

  7. 953.Verifying an Alien Dictionary(Map)

    In an alien language, surprisingly they also use english lowercase letters, but possibly in a differ ...

  8. vue中使用stylus

    1.创建完成一个初始项目后,通过 npm install stylus -D命令,在项目内安装stylus.(注意:命令结尾 -D 即是 --save-dev 的简写形式) 2.需要安装loader, ...

  9. Git使用的自我总结

    一.Git安装后打开Git bash,第一次使用 1.Git账号信息配置 2.用命令git clone从远程库克隆 会在克隆的项目下有一个隐藏的.git目录,这个目录是Git来跟踪管理版本库的,没事千 ...

  10. 2018年10月OKR初步规划

    OKR(Objectives and Key Results)即目标+关键结果,是一套明确和跟踪目标及其完成情况的管理工具和方法 今天是十月的第一个工作日,也是我归零的第一天,受到一位前辈的启发,我决 ...