1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).

2.  物理化学

(1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化学能 (原子在分子中的能量), 于是引进完全能 $$\bex E=e+g, \eex$$ 其中 $g$ 表示单位质量的化学能.

(2)  流体的状态方程一般与 $Z$ 有关 ($Z$ 不同, 混合气体不同), 而 $$\bex p=p(\rho,T,Z),\quad E=E(\rho,T,Z). \eex$$

3.  粘性热传导反应流体力学方程组

(1)  质量守恒方程 $$\bex \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$

(2)  动量守恒方程 $$\bex \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\otimes{\bf u})=\rho {\bf F}. \eex$$

(3)  能量守恒方程 $$\bex \cfrac{\p }{\p t}\sex{\rho E+\cfrac{1}{2}\rho u^2} +\Div\sez{ \sex{\rho E+\cfrac{1}{2}\rho u^2}{\bf u}-{\bf P}{\bf u} }=\Div(\kappa\n T)+\rho {\bf F}\cdot{\bf u}. \eex$$

(4)  未燃例题的质量守恒 $$\bex \cfrac{\p}{\p t}(\rho Z)+\Div(\rho Z{\bf u})=-\bar k(\rho,p,Z)\rho Z, \eex$$ 其中 $\bar k$ 表示反应率.

[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  10. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. Java线程锁,synchronized、wait、notify详解

    (原) JAVA多线程这一块有点绕,特别是对于锁,对锁机制理解不清的话,程序出现了问题也很难找到原因,在此记录一下线程的执行以及各种锁. 1.JAVA中,每个对象有且只有一把锁(lock),也叫监视器 ...

  2. 使用springMVC时的web.xml配置文件

    <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" " ...

  3. 六招轻松搞定你的CentOS系统安全加固

    Redhat是目前企业中用的最多的一类Linux,而目前针对Redhat攻击的黑客也越来越多了.我们要如何为这类服务器做好安全加固工作呢?  一.  账户安全 1.1 锁定系统中多余的自建帐号 检查方 ...

  4. iOS开发基础-图片切换(1)

    一.程序功能分析 1)点击左右箭头切换图片.序号.描述: 2)如果是首张图片,左边箭头失效: 3)如果是最后一张图片,右边箭头失效. 二.程序实现 定义确定图片位置.大小的常量: //ViewCont ...

  5. Photoshop合成雪景天使美女照片

    一.新建一个800 * 426的文件,打开人物素材把不要的东西删除掉,因为白雪景色很白,就直接涂上白色就可以了,然后把人像移动到我要的角度. 二.对人物图层按Ctrl + M 调整曲线,参数设置如下图 ...

  6. linux的挂载含义

    Linux下,mount挂载的作用,就是将一个设备(通常是存储设备)挂接到一个已存在的目录上.访问这个目录就是访问该存储设备.linux操作系统将所有的设备都看作文件,它将整个计算机的资源都整合成一个 ...

  7. 前置通知也能对参数进行加工 通过joiPoint这个方法

  8. 进程Process之join、daemon(守护)、terminate(关闭)、multiprocessing之锁、信号量和事件

    一.Process 参数介绍: 1 group参数未使用,值始终为None 2 target表示调用对象,即子进程要执行的任务 3 args表示调用对象的位置参数元组,args=(1,2,'a',) ...

  9. 笔记本装双系统!win10+Linux!所有的坑自己一个个爬过来,纪念一下。

    笔记本装双系统!win10+Linux!所有的坑自己一个个爬过来,纪念一下. 2018年09月16日 21:27:19 Corax_2ven 阅读数:14038   写在前面,装了大概5遍,装了删删了 ...

  10. tomcat配置详解

    Tomcat Server的结构图如下: 该文件描述了如何启动Tomcat Server <Server>    <Listener />    <GlobaNaming ...