pandas合并数据集-【老鱼学pandas】
有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回。
合并
首先准备数据:
import pandas as pd
import numpy as np
data0 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'])
data1 = pd.DataFrame(np.ones((3, 4))*1, columns=['a', 'b', 'c', 'd'])
data2 = pd.DataFrame(np.ones((3, 4))*2, columns=['a', 'b', 'c', 'd'])
print("data0:")
print(data0)
print("data1:")
print(data1)
print("data2:")
print(data2)
输出为:
data0:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
data1:
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
data2:
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
现在我们想把上面的这三个数据进行堆叠起来进行合并:
print(pd.concat([data0, data1, data2]))
输出为:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0
忽略原始索引号
如果我们想要把合并后的索引值成为连续的值,则需要增加参数ignore_index=True,忽略掉原始的索引,这样就能重建出新的索引:
print(pd.concat([data0, data1, data2], ignore_index=True))
输出为:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0
横向合并
默认情况下就是堆叠起来的合并方式,如果想要在列上进行合并,则只要设置axis=1属性就可以:
print(pd.concat([data0, data1, data2], axis=1))
输出为:
a b c d a b c d a b c d
0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
1 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
联合查询
有点类似SQL中的联合查询,也分为inner、outer join
首先我们先准备一下数据:
import pandas as pd
import numpy as np
data0 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'], index=[1, 2, 3])
data1 = pd.DataFrame(np.ones((3, 4))*1, columns=['b', 'c', 'd', 'e'], index=[2, 3, 4])
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并结果为:")
print(pd.concat([data0, data1]))
输出为:
data0:
a b c d
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
data1:
b c d e
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
合并结果为:
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
在默认情况下,两个数据集的合并为堆叠方式进行合并,并且如果合并后有新的列,则新列中没有的值被设置为NaN。
这种处理模式其实是设置了join='outer'的模式。
如果我们把join模式修改成'inner',将会出现什么状况呢?
print(pd.concat([data0, data1], join='inner'))
输出为:
b c d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
这样输出的结果相当于去除了NaN的列,返回了两个数据集中都有的列数据。
join axes
根据某数轴进行合并。
例如:
print(pd.concat([data0, data1], axis=1, join_axes=[data0.index]))
输出为:
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
上面例子中根据data0的索引进行横向的合并,合并结果为只在data1中选择出跟data0相同index的值。
如果我们没有使用join_axes的话,其输出为:
a b c d b c d e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0
也就是把两个数据集中相同的索引进行合并,同时添加上不相同的索引号
用append添加数据
print(data0.append(data1))
输出为:
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0
开起来跟默认的pd.contact()没什么区别,只是append可以用在数据对象上。
添加一行数据
添加用pd.Series()创建的一行数据:
s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
print("一行数据为:")
print(s1)
print("合并结果为:")
print(data0.append(s1, ignore_index=True))
输出为:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0
在新增Series数据时,必须要设置ignore_index=True。
pandas合并数据集-【老鱼学pandas】的更多相关文章
- pandas合并merge-【老鱼学pandas】
本节讲述对于两个数据集按照相同列的值进行合并. 首先定义原始数据: import pandas as pd import numpy as np data0 = pd.DataFrame({'key' ...
- pandas画图-【老鱼学pandas】
本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...
- pandas设置值-【老鱼学pandas】
本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...
- pandas处理丢失数据-【老鱼学pandas】
假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd. ...
- pandas基本介绍-【老鱼学pandas】
前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号 ...
- pandas选择数据-【老鱼学pandas】
选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...
- pandas导入导出数据-【老鱼学pandas】
pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...
- numpy的array合并-【老鱼学numpy】
概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...
- 二分类问题续 - 【老鱼学tensorflow2】
前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...
随机推荐
- nginx(三)反向代理和负载均衡
nginx(三)反向代理和负载均衡 正向代理概念:比如在学校要上网,在学校内网是一个内网ip,需要连上公网就需要一个正向代理服务器. 反向代理概念: 看下图(Nginx只做请求的转发,后台有多个htt ...
- GitHub修改用户名
刚开始用github时随便起了个名字,现在想修改名字了,自己研究了半天终于找到修改地方 1.点击settings 2.点击Account的Change username 3.点击下面红色的按钮 4.在 ...
- CF809E Surprise me!(莫比乌斯反演+Dp(乱搞?))
题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\) ...
- [九省联考2018]秘密袭击coat
[九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...
- SQL随记(二)
1.purge关键字:可以清除oracle 回收站(recyclebin)中的表和索引并释放与其相关的空间,还可清空回收站,或者清除表空间中记录的已删除的部分表空间.但是purge后不能回滚和恢复. ...
- Vue过滤器
局部定义: var vm = new Vue({ el:"#app", data:{ proData:'' }, filters: { pro_color(index){ swit ...
- Docker:dockerfile镜像的分层 [九]
一.docker镜像的分层 1.图像呈现 2.命令呈现 [root@oldboy kod]# docker image history kod:v1 IMAGE CREATED CREATED BY ...
- Vim使用技巧:将Tab转换为4个空格
一 Tab转成4个空格 为了防止因为在不同系统中Tab键的宽度不一致而导致代码缩进显示混乱的情况,有必要将Tab键转换成空格,推荐的空格数为4.将下面的代码写入你的.vimrc文件中即可实现在Vim编 ...
- UML建工工具
本篇博文简单介绍一下自己在搜索UML建模工具的过程中收集到的一些信息. 如果想用中文的,可以考虑楚凡科技的Trufun Plato,不过最近好像没有怎么更新了. 很多前辈以前用的是Rational R ...
- INI配置文件的格式
为什么要用INI文件?如果我们程序没有任何配置文件时,这样的程序对外是全封闭的,一旦程序需要修改一些参数必须要修改程序代码本身并重新编译,这样很不好,所以要用配置文件,让程序出厂后还能根据需要进行必要 ...