有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回。

合并

首先准备数据:

import pandas as pd
import numpy as np
data0 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'])
data1 = pd.DataFrame(np.ones((3, 4))*1, columns=['a', 'b', 'c', 'd'])
data2 = pd.DataFrame(np.ones((3, 4))*2, columns=['a', 'b', 'c', 'd'])
print("data0:")
print(data0) print("data1:")
print(data1) print("data2:")
print(data2)

输出为:

data0:
a b c d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
data1:
a b c d
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
data2:
a b c d
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0

现在我们想把上面的这三个数据进行堆叠起来进行合并:

print(pd.concat([data0, data1, data2]))

输出为:

     a    b    c    d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
0 2.0 2.0 2.0 2.0
1 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 2.0

忽略原始索引号

如果我们想要把合并后的索引值成为连续的值,则需要增加参数ignore_index=True,忽略掉原始的索引,这样就能重建出新的索引:

print(pd.concat([data0, data1, data2], ignore_index=True))

输出为:

     a    b    c    d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
5 1.0 1.0 1.0 1.0
6 2.0 2.0 2.0 2.0
7 2.0 2.0 2.0 2.0
8 2.0 2.0 2.0 2.0

横向合并

默认情况下就是堆叠起来的合并方式,如果想要在列上进行合并,则只要设置axis=1属性就可以:

print(pd.concat([data0, data1, data2], axis=1))

输出为:

     a    b    c    d    a    b    c    d    a    b    c    d
0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
1 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0

联合查询

有点类似SQL中的联合查询,也分为inner、outer join

首先我们先准备一下数据:

import pandas as pd
import numpy as np
data0 = pd.DataFrame(np.ones((3, 4))*0, columns=['a', 'b', 'c', 'd'], index=[1, 2, 3])
data1 = pd.DataFrame(np.ones((3, 4))*1, columns=['b', 'c', 'd', 'e'], index=[2, 3, 4]) print("data0:")
print(data0) print("data1:")
print(data1) print("合并结果为:")
print(pd.concat([data0, data1]))

输出为:

data0:
a b c d
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
data1:
b c d e
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
合并结果为:
a b c d e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0

在默认情况下,两个数据集的合并为堆叠方式进行合并,并且如果合并后有新的列,则新列中没有的值被设置为NaN。

这种处理模式其实是设置了join='outer'的模式。

如果我们把join模式修改成'inner',将会出现什么状况呢?

print(pd.concat([data0, data1], join='inner'))

输出为:

     b    c    d
1 0.0 0.0 0.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0

这样输出的结果相当于去除了NaN的列,返回了两个数据集中都有的列数据。

join axes

根据某数轴进行合并。

例如:

print(pd.concat([data0, data1], axis=1, join_axes=[data0.index]))

输出为:

     a    b    c    d    b    c    d    e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

上面例子中根据data0的索引进行横向的合并,合并结果为只在data1中选择出跟data0相同index的值。

如果我们没有使用join_axes的话,其输出为:

     a    b    c    d    b    c    d    e
1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN
2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0

也就是把两个数据集中相同的索引进行合并,同时添加上不相同的索引号

用append添加数据

print(data0.append(data1))

输出为:

     a    b    c    d    e
1 0.0 0.0 0.0 0.0 NaN
2 0.0 0.0 0.0 0.0 NaN
3 0.0 0.0 0.0 0.0 NaN
2 NaN 1.0 1.0 1.0 1.0
3 NaN 1.0 1.0 1.0 1.0
4 NaN 1.0 1.0 1.0 1.0

开起来跟默认的pd.contact()没什么区别,只是append可以用在数据对象上。

添加一行数据

添加用pd.Series()创建的一行数据:

s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
print("一行数据为:")
print(s1)
print("合并结果为:")
print(data0.append(s1, ignore_index=True))

输出为:

     a    b    c    d
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 1.0 2.0 3.0 4.0

在新增Series数据时,必须要设置ignore_index=True。

pandas合并数据集-【老鱼学pandas】的更多相关文章

  1. pandas合并merge-【老鱼学pandas】

    本节讲述对于两个数据集按照相同列的值进行合并. 首先定义原始数据: import pandas as pd import numpy as np data0 = pd.DataFrame({'key' ...

  2. pandas画图-【老鱼学pandas】

    本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...

  3. pandas设置值-【老鱼学pandas】

    本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...

  4. pandas处理丢失数据-【老鱼学pandas】

    假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd. ...

  5. pandas基本介绍-【老鱼学pandas】

    前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号 ...

  6. pandas选择数据-【老鱼学pandas】

    选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...

  7. pandas导入导出数据-【老鱼学pandas】

    pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...

  8. numpy的array合并-【老鱼学numpy】

    概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...

  9. 二分类问题续 - 【老鱼学tensorflow2】

    前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...

随机推荐

  1. nginx(三)反向代理和负载均衡

    nginx(三)反向代理和负载均衡 正向代理概念:比如在学校要上网,在学校内网是一个内网ip,需要连上公网就需要一个正向代理服务器. 反向代理概念: 看下图(Nginx只做请求的转发,后台有多个htt ...

  2. GitHub修改用户名

    刚开始用github时随便起了个名字,现在想修改名字了,自己研究了半天终于找到修改地方 1.点击settings 2.点击Account的Change username 3.点击下面红色的按钮 4.在 ...

  3. CF809E Surprise me!(莫比乌斯反演+Dp(乱搞?))

    题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\) ...

  4. [九省联考2018]秘密袭击coat

    [九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...

  5. SQL随记(二)

    1.purge关键字:可以清除oracle 回收站(recyclebin)中的表和索引并释放与其相关的空间,还可清空回收站,或者清除表空间中记录的已删除的部分表空间.但是purge后不能回滚和恢复. ...

  6. Vue过滤器

    局部定义: var vm = new Vue({ el:"#app", data:{ proData:'' }, filters: { pro_color(index){ swit ...

  7. Docker:dockerfile镜像的分层 [九]

    一.docker镜像的分层 1.图像呈现 2.命令呈现 [root@oldboy kod]# docker image history kod:v1 IMAGE CREATED CREATED BY ...

  8. Vim使用技巧:将Tab转换为4个空格

    一 Tab转成4个空格 为了防止因为在不同系统中Tab键的宽度不一致而导致代码缩进显示混乱的情况,有必要将Tab键转换成空格,推荐的空格数为4.将下面的代码写入你的.vimrc文件中即可实现在Vim编 ...

  9. UML建工工具

    本篇博文简单介绍一下自己在搜索UML建模工具的过程中收集到的一些信息. 如果想用中文的,可以考虑楚凡科技的Trufun Plato,不过最近好像没有怎么更新了. 很多前辈以前用的是Rational R ...

  10. INI配置文件的格式

    为什么要用INI文件?如果我们程序没有任何配置文件时,这样的程序对外是全封闭的,一旦程序需要修改一些参数必须要修改程序代码本身并重新编译,这样很不好,所以要用配置文件,让程序出厂后还能根据需要进行必要 ...