把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数。

 
例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6。如果有多个数复杂度相等,输出最小的。

Input第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 100) 
第2 - T + 1行:T个数,表示需要计算的n。(1 <= n <= 10^18)Output共T行,每行2个数用空格分开,第1个数是答案,第2个数是约数的数量。Sample Input

5
1
10
100
1000
10000

Sample Output

1 1
6 4
60 12
840 32
7560 64

题意:给定N,求小于等于N的因子最多的数。

思路:DFS即可。减枝就是,越小的数个数肯定比大的数多。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int p[]={,,,,,,,,,,,,,,}; //
ll ans,num,N;
void dfs(int pos,ll sum,ll cnt,int pre)
{
if(cnt<=num&&sum>ans) return ;
if(cnt>num||(num==cnt&&sum<ans)) {ans=sum;num=cnt;}
if(pos==) return ;
ll tmp=;
for(int i=;i<=pre;i++){
if(sum<=N/tmp) dfs(pos+,sum*tmp,cnt*(i+),i);
tmp=(ll)tmp*p[pos];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&N);
ans=num=; dfs(0LL,1LL,1LL,10LL);
printf("%lld %lld\n",ans,num);
}
return ;
}

51nod1060:最复杂的数(DFS求反素数)的更多相关文章

  1. 约数 求反素数bzoj1053 bzoj1257

    //约数 /* 求n的正约数集合:试除法 复杂度:O(sqrt(n)) 原理:扫描[1,sqrt(N)],尝试d能否整除n,若能,则N/d也能 */ ],m=; ;i*i<=n;i++){ ){ ...

  2. Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】

    题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...

  3. zoj 1562 反素数 附上个人对反素数性质的证明

    反素数的定义:对于不论什么正整数,其约数个数记为.比如,假设某个正整数满足:对随意的正整 数.都有,那么称为反素数. 从反素数的定义中能够看出两个性质: (1)一个反素数的全部质因子必定是从2開始的连 ...

  4. 【BZOJ1053】[HAOI2007]反素数

    [BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...

  5. 1060 最复杂的数(反素数玄学dfs)

    1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...

  6. 51nod1060(反素数&dfs)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060 题意:中文题诶- 思路: 这里用到了反素数的性质: 对 ...

  7. 51nod 1060 最复杂的数 反素数

    1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...

  8. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  9. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

随机推荐

  1. 纯CSS3美化radio和checkbox

    如题,主要通过CSS3来实现将radio和checkbox美化的效果.可是兼容性并非非常好,PC端仅仅支持chrome浏览器(IE和Firefox測试不行,其它没有很多其它測试).然后微信端和QQ端訪 ...

  2. 关于Oracle中sysoper这个系统权限的问题

    我们都知道Oracle数据库安装完之后.默认的会有这样几个系统角色或权限.nomal,sysdba,sysoper等等,之前每次登录Oracle的时候.都是直接以conn / as sysdba 的身 ...

  3. meta标签多种用法

    <meta name=”google” content=”notranslate” /> <!-- 有时,Google在结果页面会提供一个翻译链接,但有时候你不希望出现这个链接,你可 ...

  4. python(24)- 面向对象进阶

    面向对象基础知识: 1.面向对象是一种编程方式,此编程方式的实现是基于对类和对象的使用: 2.类是一个模板,模板中包装了多个‘函数’供使用(可以将多函数中公用的变量封装到对象中): 3.对象,根据模板 ...

  5. gulp-gulpfile.js语法说明

    关于gulpfile文件: 直接上代码吧!! /*! * gulp * $ npm install gulp gulp-ruby-sass gulp-cached gulp-uglify gulp-r ...

  6. class中的私有属性的访问

    在类中的私有属性设置: class Name(): __init__(self): self.__name = 'arnol'` 如何查看: 1,在类中定义一个方法: def getname(self ...

  7. 通过路由管理视图间切换 - AngularJS路由解析

    模板的视图刷新 ng-view这个指令和路由组合之后就可以将$route对应的视图放入指定的HTML中,这一过程中它会创建自己的作用域并将模板嵌套在内部. ng-view指令的优先级是1000(终极) ...

  8. ipython notebook 如何打开.ipynb文件?

    标签: pythontensorflow 2017-03-29 14:17 235人阅读 评论(0) 收藏 举报  分类: TensorFlow(13)  转自:https://www.zhihu.c ...

  9. CASIO fx-991es Plus科学计算器使用技巧

    关于输出: 默认是按照自然书写格式显示的,计算结果是按照分数形式显示,如0.5x0.5,会显示=1/4.虽然很直观,但是在测量和估算上略有不便.此时用 SHIFT --> MODE (也就是se ...

  10. lua 字符串处理

    匹配模式(pattern) . 任何单个字符 %a 任何字母 %c 任何控制字符 %d 任何数字 %g 任何除空白符外的可打印字符 %l 所有小写字母 %p 所有标点符号 %s 所有空白字符 %u 所 ...