把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数。

 
例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6。如果有多个数复杂度相等,输出最小的。

Input第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 100) 
第2 - T + 1行:T个数,表示需要计算的n。(1 <= n <= 10^18)Output共T行,每行2个数用空格分开,第1个数是答案,第2个数是约数的数量。Sample Input

5
1
10
100
1000
10000

Sample Output

1 1
6 4
60 12
840 32
7560 64

题意:给定N,求小于等于N的因子最多的数。

思路:DFS即可。减枝就是,越小的数个数肯定比大的数多。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int p[]={,,,,,,,,,,,,,,}; //
ll ans,num,N;
void dfs(int pos,ll sum,ll cnt,int pre)
{
if(cnt<=num&&sum>ans) return ;
if(cnt>num||(num==cnt&&sum<ans)) {ans=sum;num=cnt;}
if(pos==) return ;
ll tmp=;
for(int i=;i<=pre;i++){
if(sum<=N/tmp) dfs(pos+,sum*tmp,cnt*(i+),i);
tmp=(ll)tmp*p[pos];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&N);
ans=num=; dfs(0LL,1LL,1LL,10LL);
printf("%lld %lld\n",ans,num);
}
return ;
}

51nod1060:最复杂的数(DFS求反素数)的更多相关文章

  1. 约数 求反素数bzoj1053 bzoj1257

    //约数 /* 求n的正约数集合:试除法 复杂度:O(sqrt(n)) 原理:扫描[1,sqrt(N)],尝试d能否整除n,若能,则N/d也能 */ ],m=; ;i*i<=n;i++){ ){ ...

  2. Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】

    题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...

  3. zoj 1562 反素数 附上个人对反素数性质的证明

    反素数的定义:对于不论什么正整数,其约数个数记为.比如,假设某个正整数满足:对随意的正整 数.都有,那么称为反素数. 从反素数的定义中能够看出两个性质: (1)一个反素数的全部质因子必定是从2開始的连 ...

  4. 【BZOJ1053】[HAOI2007]反素数

    [BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...

  5. 1060 最复杂的数(反素数玄学dfs)

    1060 最复杂的数 题目来源: Ural 1748 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中 ...

  6. 51nod1060(反素数&dfs)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1060 题意:中文题诶- 思路: 这里用到了反素数的性质: 对 ...

  7. 51nod 1060 最复杂的数 反素数

    1060 最复杂的数 基准时间限制:1 秒 空间限制:131072 KB 把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 ...

  8. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  9. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

随机推荐

  1. JAVA微信开发:[17]如何获取所有关注用户

    该方法获取所有关注公共账号的微信用户的openId集合, 再通过openId集合既可以获取所有的用户的信息.   /** * 获取所有的关注用户 * * @return */ public  List ...

  2. redis主从连接不成功错误

    redis主从连接不成功错误 学习了:https://blog.csdn.net/wzqzhq/article/details/64919133 需要增加 masterauth  password.. ...

  3. FreeBSD 8

    FreeBSD 8.0的安装过程和7.2区别不大.先在FreeBSD官方网站上下载安装镜像,我一般都下载DVD的ISO,也有人爱好下最小的安装包,然后通过FTP或HTTP方式从网上下载各个程序包. 这 ...

  4. Mac 安装配置Mysql

    Mac下安装配置Mysql By 白熊花田(http://blog.csdn.net/whiterbear) 转载需注明出处,谢谢. 下载安装 去官网下载Community版本号的mysql安装文件. ...

  5. django 实现下载功能

    from django.http import FileResponse def download(request): if..... file=open([path],'rb') response= ...

  6. angular - 安装 -1

    在阅读以下教程以前,请安装node,请先确保您的使用平台:Win.Mac.Linux 首次安装node以后,我们先检测版本 node -v npm -v 这样就代表安装成功,那么我们可以进入下一步了 ...

  7. 为什么应使用 Node.js

    为什么应使用 Node.js JavaScript 高涨的人气带来了很多变化,以至于如今使用其进行网络开发的形式也变得截然不同了.就如同在浏览器中一样,现在我们也可以在服务器上运行 JavaScrip ...

  8. C结构体对齐

    函数模板针对仅参数类型不同的函数?   http://blog.csdn.net/renrenhappy/article/details/5931457     计算结构体的大小就要考虑数据对齐问题. ...

  9. 实例讲解SVN分支和合并问题(转)

    本节向大家简单描述一下SVN分支和合并方面的知识,在学习SVN的过程中SVN分支和合并时经常遇到的问题,在这里和大家分享一下,希望本文对大家有用. 关于主线同SVN分支合并的概念及如何使用的误区此问题 ...

  10. 关于TIME_WAIT状态

    前言 为何TCP ”四次分手“ 的过程中会有一个TIME_WAIT状态?这个状态有什么意义呢?这是网络中的一个经典问题,本文将给出精简的回答. 什么是TIME_WAIT状态 这是TCP通信协议中出现的 ...