题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1093

sol  :一开始理解错题意了QAQ,还莫名其妙写挂了QAQ,调了半天

   首先显然一个强联通分量肯定要么都属于最大半联通子图,要么都不属于

   所以先用tarjan缩点,重建后得到一个DAG

   之后我们可以发现,得到的答案一定是一条链,所以要求最长链的长度和数量

   直接dp即可,记得判重(我挂了好久QAQ)

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int Mx=;
int n,m,p,maxn,ans,cnt,tag,top;
int dfn[Mx],low[Mx],val[Mx],belong[Mx],stk[Mx];
int in[Mx],f[Mx],g[Mx],vis[Mx];
bool instk[Mx];
int tot,head1[Mx],head2[Mx],nxt1[*Mx],ver1[*Mx],nxt2[*Mx],ver2[*Mx];
void add1(int x,int y)
{
nxt1[++tot]=head1[x];
ver1[tot]=y;
head1[x]=tot;
}
void add2(int x,int y)
{
nxt2[++tot]=head2[x];
ver2[tot]=y;
head2[x]=tot;
in[y]++;
}
void tarjan(int x)
{
dfn[x]=low[x]=++cnt;
stk[++top]=x,instk[x]=;
for(int i=head1[x];i;i=nxt1[i])
{
int y=ver1[i];
if(!dfn[y])
tarjan(y),
low[x]=min(low[x],low[y]);
else if(instk[y])
low[x]=min(low[x],dfn[y]);
}
if(low[x]==dfn[x])
{
int now=;tag++;
while(now!=x)
{
now=stk[top--];
instk[now]=;
val[tag]++;
belong[now]=tag;
}
}
}
void rebuild()
{
tot=;
for(int x=;x<=n;x++)
for(int i=head1[x];i;i=nxt1[i])
{
int y=ver1[i];
if(belong[x]!=belong[y])
add2(belong[x],belong[y]);
}
}
void dp()
{
int l=,r=;
for(int i=;i<=tag;i++)
{
if(!in[i]) stk[r++]=i;
f[i]=val[i],g[i]=;
}
while(l!=r)
{
int x=stk[l++];
for(int i=head2[x];i;i=nxt2[i])
{
int y=ver2[i]; in[y]--;
if(!in[y]) stk[r++]=y;
if(vis[y]==x) continue;
if(f[x]+val[y]>f[y])
{
f[y]=f[x]+val[y];
g[y]=g[x];
}
else if(f[x]+val[y]==f[y])
g[y]=(g[x]+g[y])%p;
vis[y]=x;
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&p);
for(int i=,x,y;i<=m;i++)
{
scanf("%d%d",&x,&y);
add1(x,y);
}
for(int i=;i<=n;i++) if(!dfn[i]) tarjan(i);
rebuild(); dp();
for(int i=;i<=tag;i++)
{
if(f[i]>maxn) maxn=f[i],ans=g[i];
else if(f[i]==maxn) ans+=g[i],ans%=p;
}
printf("%d\n%d\n",maxn,ans);
return ;
}

bzoj1093【ZJOI2007】最大半联通子图的更多相关文章

  1. bzoj1093 [ZJOI2007]最大半联通子图 缩点 + 拓扑序

    最大半联通子图对应缩点后的$DAG$上的最长链 复杂度$O(n + m)$ #include <cstdio> #include <cstring> #include < ...

  2. 【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)

    [BZOJ1093][ZJOI2007]最大半联通子图(Tarjan,动态规划) 题面 BZOJ 洛谷 洛谷的讨论里面有一个好看得多的题面 题解 显然强连通分量对于题目是没有任何影响的,直接缩点就好了 ...

  3. [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...

  4. BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】

    题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...

  5. BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)

    题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...

  6. BZOJ1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  7. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  8. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  9. 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图

    思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...

  10. BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)

    发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...

随机推荐

  1. SpringBoot学习3:springboot整合filter

    整合方式一:通过注解扫描完成 Filter 组件的注册 1.编写filter package com.bjsxt.filter; import javax.servlet.*; import java ...

  2. Vuex的简单了解

    vuex的官网了解:https://vuex.vuejs.org/zh/guide/ 一.什么是vuex? Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所 ...

  3. js测试密码的强度

    测试密码的强度.js //网站也会根据输入密码的字符特点给出相应的提示,如密码过短.强度差.强度中等.强度强等. //这又是怎么实现的呢?看下面代码: <input type="pas ...

  4. 1px移动端显示问题

    设计图上的标注要有1px的线条,css本来以为直接写个1px就能万事大吉了,手机上怎么看都很粗. 至于具体为什么会这样,百度看了一圈,有点懵懵懂懂,大概就是物理分辨率高于实际网页的像素分辨率的原因吧. ...

  5. js字符串去掉所有空格

    字符串去掉所有空格 "abc 123 def".replace(/\s/g, "") 字符串去掉左右两端空格 " abc 123 def " ...

  6. JZOJ 5809. 【NOIP2008模拟】数羊

    5809. [NOIP2008模拟]数羊 (File IO): input:sheep.in output:sheep.out Time Limits: 1000 ms  Memory Limits: ...

  7. Python知识点入门笔记——特色数据类型(元组)

    元组(tuple)是Python的另一种特色数据类型,元组和列表是相似的,可以存储不同类型的数据,但是元组是不可改变的,创建后就不能做任何修改操作. 创建元组 用逗号隔开的就是元组,但是为了美观和代码 ...

  8. [USACO]奶牛赛跑(逆序对)

    Description 约翰有 N 头奶牛,他为这些奶牛准备了一个周长为 C 的环形跑牛场.所有奶牛从起点同时起跑,奶牛在比赛中总是以匀速前进的,第 i 头牛的速度为 Vi.只要有一头奶牛跑完 L 圈 ...

  9. input type=file输入框

    <div class="row"> <!--选择图片按钮--> <div class="col-xs-12" align=&quo ...

  10. Linux下安装nginx,以及启动和停止

    1.安装 安装nginx之前,首先确保系统已经安装了依赖:g++.gcc.openssl-devel.pcre-devel和zlib-devel软件 yum install gcc-c++ yum - ...