Eqs - poj 1840(hash)
题意:对于方程:a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ,有xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 现在给出a1,a2,a3,a4,a5的值,求出满足上面方程的解有多少个。
思路:hash的应用。暴力枚举的话会达到100^5,明显会超时。所以将方程分成-(a1x13+ a2x23 )和 a3x33+a4x43+ a5x53 两部分,若这两部分相等,则为方程的一个解。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
short hash[];
int main(){
int coff[],base[];
int i,j,k;
int result=;
for(i=;i<;i++){
scanf("%d",&coff[i]);
}
for(i=-;i<=;i++){
int tmp=i*i*i;
base[i+]=tmp;
}
memset(hash,,sizeof(hash));
for(i=-;i<=;i++){
for(j=-;j<=;j++){ if(i!=&&j!=){
int tmp=coff[]*base[i+]+coff[]*base[j+];
hash[tmp+]++;
}
}
} for(i=-;i<=;i++){
for( j=-;j<=;j++){
for(k=-;k<=;k++){
if(i!=&&j!=&&k!=){
int tmp=coff[]*base[i+]+coff[]*base[j+]+coff[]*base[k+];
tmp=-tmp;
if(tmp<&&tmp>=-)
result+=hash[tmp+];
} } }
}
printf("%d\n",result);
return ;
}
附:
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 14021 | Accepted: 6889 |
Description
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
Output
Sample Input
37 29 41 43 47
Sample Output
654
Eqs - poj 1840(hash)的更多相关文章
- POJ 1840 HASH
题目链接:http://poj.org/problem?id=1840 题意:公式a1x1^3+ a2x2^3+ a3x3^3+ a4x4^3+ a5x5^3=0,现在给定a1~a5,求有多少个(x1 ...
- poj 1840 Eqs (hash)
题目:http://poj.org/problem?id=1840 题解:http://blog.csdn.net/lyy289065406/article/details/6647387 小优姐讲的 ...
- POJ 1840 Eqs 二分+map/hash
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- POJ 1840 Eqs(hash)
题意 输入a1,a2,a3,a4,a5 求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立 a,x取值在-50到50之间 直接暴力的话肯定会超时的 100的五次方 10e了都 ...
- POJ 1840 Eqs
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 15010 Accepted: 7366 Description ...
- POJ 1840 Eqs 解方程式, 水题 难度:0
题目 http://poj.org/problem?id=1840 题意 给 与数组a[5],其中-50<=a[i]<=50,0<=i<5,求有多少组不同的x[5],使得a[0 ...
- POJ 1840 Eqs(乱搞)题解
思路:这题好像以前有类似的讲过,我们把等式移一下,变成 -(a1*x1^3 + a2*x2^3)== a3*x3^3 + a4*x4^3 + a5*x5^3,那么我们只要先预处理求出左边的答案,然后再 ...
- poj 1840 Eqs 【解五元方程+分治+枚举打表+二分查找所有key 】
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 13955 Accepted: 6851 Description ...
- POJ 1840:Eqs
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53= The coe ...
随机推荐
- WPF使用ARCGIS App文件配置Cs后台文件
using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...
- Python描写叙述符(descriptor)解密
Python中包括了很多内建的语言特性,它们使得代码简洁且易于理解.这些特性包括列表/集合/字典推导式,属性(property).以及装饰器(decorator).对于大部分特性来说,这些" ...
- Some Web API Url Samples
URI Verb Description ...
- php读取ini(init)文件
<?php header('content-type:text/html;charset=utf-8'); //读取.init文件 $config_file_path = './config/d ...
- javascript对于0的解读
CreateTime--2017年6月29日10:36:01Author:Marydon javascript对于0的解读 1.0与“0” 1.1 判断0与"0"是否相等 测试 ...
- javascript Date日期类
四.Date日期类 迁移时间:2017年5月27日18:43:02 Author:Marydon (一)对日期进行格式化(日期转字符串) 自定义Date日期类的format()格式化方法 方式一: ...
- poj3177 Redundant Paths 边双连通分量
给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同)). 图中的双连通分量不用管,所以缩点之后建新的无向无环图. 这样,题目问题等效于,把新图中度数为1的点相 ...
- 网络请求框架---Volley
去年的Google I/O大会为android开发者带来了一个网络请求框架,它的名字叫做Volley.Volley诞生的使命就是让Android的网络请求更快,更健壮,而且它的网络通信的实现是基于Ht ...
- bbc mvn报错
http://www.cnblogs.com/zhouyalei/archive/2011/11/30/2268606.html
- 在windows 2008 R2上安装sharepoint 2013时遇到提示必须安装 .netframeword4.5的处理办法
近日,有个客户需要个测试环境,需要搭建一个sps2013的测试服务器 但基于服务器软件授权的考虑,让使用windows2008 作为系统服务器 但一安装就碰到个提示,要求先安装framework4.5 ...