题目大意:给你两个多项式$A,B$,求多项式$C$使得:
$$
C_n=\sum\limits_{x|y=n}A_xB_y
$$
题解:$FWT$,他可以解决形如$C_n=\sum\limits_{x\oplus y=n}A_xB_y$的问题,其中$\oplus$为位运算(一般为$or,and,xor$)

or:

void FWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] += A[i + j];
}
void IFWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] -= A[i + j];
}

  

and:

void FWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
}
void IFWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
for (int i = 0; i < lim; ++i) A[i] /= lim;
}

  

xor:

void FWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
}
void IFWT(int *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) {
int X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
for (int i = 0; i < lim; ++i) A[i] /= lim;
}

  

卡点:

C++ Code:

#include <cstdio>
#include <cctype>
inline int read() {
static int ch;
while (isspace(ch = getchar())) ;
return ch & 15;
} #define N 1048576
int lim;
inline void init(const int n) {
lim = 1; while (lim < n) lim <<= 1;
}
inline void FWT(long long *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] += A[i + j];
}
inline void IFWT(long long *A) {
for (int mid = 1; mid < lim; mid <<= 1)
for (int i = 0; i < lim; i += mid << 1)
for (int j = 0; j < mid; ++j) A[i + j + mid] -= A[i + j];
} int n;
long long A[N], B[N];
int main() {
scanf("%d", &n);
for (int i = 0; i < n; ++i) A[i] = read();
for (int i = 0; i < n; ++i) B[i] = read();
init(n);
FWT(A), FWT(B);
for (int i = 0; i < lim; ++i) A[i] *= B[i];
IFWT(A);
for (int i = 0; i < n; ++i) {
printf("%lld", A[i]);
putchar(i == (n - 1) ? '\n' : ' ');
}
return 0;
}

  

[SOJ #47]集合并卷积的更多相关文章

  1. [SOJ #48]集合对称差卷积

    题目大意:给你两个多项式$A,B$,求多项式$C$使得: $$C_n=\sum\limits_{x\oplus y=n}A_xB_y$$题解:$FWT$ 卡点:无 C++ Code: #include ...

  2. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  3. FMT 与 子集(逆)卷积

    本文参考了 Dance of Faith 大佬的博客 我们定义集合并卷积 \[ h_{S} = \sum_{L \subseteq S}^{} \sum_{R \subseteq S}^{} [L \ ...

  4. BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演

    http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...

  5. loj #161 子集卷积

    求不相交集合并卷积 sol: 集合并卷积?看我 FWT! 交一发,10 以上的全 T 了 然后经过参考别人代码认真比对后发现我代码里有这么一句话: rep(s, , MAXSTATE) rep(i, ...

  6. 【2018北京集训(六)】Lcm

    Portal --> 出错啦qwq(好吧其实是没有) Description 给定两个正整数\(n,k\),选择一些互不相同的正整数,满足这些数的最小公倍数恰好为\(n\),并且这些数的和为\( ...

  7. Weekly Traning Farm 16

    先安利一下这套比赛,大概是doreamon搞的,每周五晚上有一场,虽然没人做题目质量挺高的 http://codeforces.com/group/gRkn7bDfsN/contests(报名前要先报 ...

  8. FWT 学习总结

    我理解的FWT是在二元运算意义下的卷积 目前比较熟练掌握的集合对称差卷积 对于子集卷积和集合并卷积掌握不是很熟练(挖坑ing) 那么就先来谈一谈集合对称差卷积吧 所谓集合对称差卷积 就是h(i)=si ...

  9. UOJ#310.【UNR #2】黎明前的巧克力(FWT)

    题意 给出 \(n\) 个数 \(\{a_1, \cdots, a_n\}\),从中选出两个互不相交的集合(不能都为空),使得第一个集合与第二个集合内的数的异或和相等,求总方案数 \(\bmod 99 ...

随机推荐

  1. cyclone4驱动LM75A温湿度传感器学习

    1. LM75A第一次使用,I2C接口,8脚 2. 打开quartus工程,下面只要是看看代码结构,问题在于多个always语句,逻辑上不太好分清楚,主要看状态机 module I2C_READ( c ...

  2. Nginx+Tomcat多站点访问默认主页问题-狒狒完美解决-Q9715234

    <Engine name="Catalina" defaultHost="www.abc.com"> <Host name="www ...

  3. url和uri的一些问题

    一 url和uri的区别: uri: uniform resource identifier,统一资源标识符. url: uniform resource locator,统一资源定位符. 做一个类比 ...

  4. Python函数变量和返回值

    Python函数的全局变量和局部变量 1.不同的编程语言,程序可以分为函数和过程两大类,函数具有具体返回值,而过程则不具有具体的返回值,python只具有函数,因为对于它的一般函数,其返回值为所具体返 ...

  5. go通过第三方库 mahonia gbk 转utf8

    go get github.com/axgle/mahonia dec := mahonia.NewDecoder("GBK")ret:=dec.ConvertString(res ...

  6. JDK源码分析:Integer.java部分源码解析

    1)声明部: public final class Integer extends Number implements Comparable<Integer> extends Number ...

  7. springMVC第二章

    springMVC第二章 一.URL 映射 可以同时设置多个URL来访问某个控制器或方法.设置value属性: @RequestMapping(value= {"/grade",& ...

  8. python函数学习之装饰器

    装饰器 装饰器的本质是一个python函数,它的作用是在不对原函数做任何修改的同时,给函数添加一定的功能.装饰器的返回值也是一个函数对象. 分类: 1.不带参数的装饰器函数: def wrapper( ...

  9. Python3 Tkinter-Scrollbar

    1.创建 from tkinter import * root=Tk() Scrollbar(root).pack() root.mainloop() 2.设置silder的位置 from tkint ...

  10. 自测之Lesson12:信号量

    题目:创建一个包含5个信号量的信号集. 完成代码: #include <stdio.h> #include <sys/ipc.h> #include <sys/sem.h ...