BZOJ4514:[SDOI2016]数字配对——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4514
有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,那么这两个数字可以配对,并获得 ci×cj 的价值。一个数字只能参与一次配对,可以不参与配对。在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。
参考洛谷题解。
这题很明显是要网络流的,且将关系图建出来之后很明显是二分图。
那么我们自然的将点归为两类,一类连S,一类连T,这样我们的边就有了方向性,然后就可以跑最大费用最大流了!
但是难受的是,我们跑的费用要求始终不低于0,这就很难办,我们简单的费用流无法胜任这个工作。
但是可以发现的是,我们spfa找可行流的时候,显然是先走大费用路径再走小费用路径,于是我们在spfa上直接跑网络流,一边更新dis,一边记录当前节点流入了多少,显然每次只能跑出来一条路径一个流因此会比原版费用流慢很多,复杂度O(玄学)反正能过。
以及我们当然不必要将二分图建出来dfs,我们记录tot[i]表示第i个数的质因子个数,则奇数为一堆偶数为一堆即可。
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int INF=1e9;
const ll LINF=1e18;
const int N=;
const int M=N*N*;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt,w;
ll b;
}e[M];
int n,head[N],cnt,a[N],b[N],c[N],tot[N],limit[N],pre[N];
ll dis[N];
bool vis[N];
inline void add(int u,int v,int w,ll b){
e[++cnt].to=v;e[cnt].w=w;e[cnt].b=b;e[cnt].nxt=head[u];head[u]=cnt;
e[++cnt].to=u;e[cnt].w=;e[cnt].b=-b;e[cnt].nxt=head[v];head[v]=cnt;
}
int suan(int k){
int ans=;
for(int i=;i*i<=k;i++){
while(k%i==){
ans++;k/=i;
}
}
if(k!=)ans++;
return ans;
}
inline bool spfa(int s,int t,int m){
queue<int>q;
memset(vis,,sizeof(vis));
memset(pre,-,sizeof(pre));
for(int i=;i<=m;i++)dis[i]=-LINF;
limit[s]=INF;dis[s]=;q.push(s);vis[s]=;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;ll b=e[i].b;
if(e[i].w&&dis[v]<dis[u]+b){
dis[v]=dis[u]+b;
limit[v]=min(limit[u],e[i].w);
pre[v]=i;
if(!vis[v])
vis[v]=,q.push(v);
}
}
}
return dis[t]>-LINF;
}
inline int costflow(int S,int T,int m){
int flow=,delta;ll ans=;
while(spfa(S,T,m)){
if(ans+dis[T]<)break;
if(dis[T]>=)delta=limit[T];
else delta=min((ll)limit[T],ans/(-dis[T]));
ans+=dis[T]*delta;flow+=delta;
for(int u=T;pre[u]!=-;u=e[pre[u]^].to){
e[pre[u]].w-=delta;e[pre[u]^].w+=delta;
}
}
return flow;
}
int main(){
memset(head,-,sizeof(head));cnt=-;
n=read();
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<=n;i++)b[i]=read();
for(int i=;i<=n;i++)c[i]=read();
for(int i=;i<=n;i++)tot[i]=suan(a[i]);
int S=n+,T=S+;
for(int i=;i<=n;i++){
if(tot[i]&)add(S,i,b[i],);
else add(i,T,b[i],);
if(tot[i]&){
for(int j=;j<=n;j++){
if((a[j]%a[i]==&&tot[i]+==tot[j])||
(a[i]%a[j]==&&tot[j]+==tot[i]))
add(i,j,INF,(ll)c[i]*c[j]);
}
}
}
printf("%d\n",costflow(S,T,T));
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ4514:[SDOI2016]数字配对——题解的更多相关文章
- [bzoj4514][SDOI2016]数字配对——二分图
题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...
- BZOJ4514 [Sdoi2016]数字配对 【费用流】
题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...
- BZOJ4514——[Sdoi2016]数字配对
有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...
- bzoj4514 [Sdoi2016]数字配对
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- BZOJ4514[Sdoi2016]数字配对——最大费用最大流
题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...
- bzoj4514 [Sdoi2016]数字配对(网络流)
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- bzoj4514: [Sdoi2016]数字配对--费用流
看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...
- bzoj4514: [Sdoi2016]数字配对(费用流)
传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
随机推荐
- hdu1061Rightmost Digit(快速幂取余)
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- P/Invoke 光标的操作
获取与设置光标在屏幕上的位置 GetCursorPos 获取光标在屏幕上的位置,光标位置始终是在屏幕坐标纵指定的,并且不受包含光标的窗口映射模式的影响 函数原型: BOOL GetCursorPos( ...
- WEB安全--高级sql注入,爆错注入,布尔盲注,时间盲注
1.爆错注入 什么情况想能使用报错注入------------页面返回连接错误信息 常用函数 updatexml()if...floorextractvalue updatexml(,concat() ...
- 孤荷凌寒自学python第八十一天学习爬取图片1
孤荷凌寒自学python第八十一天学习爬取图片1 (完整学习过程屏幕记录视频地址在文末) 通过前面十天的学习,我已经基本了解了通过requests模块来与网站服务器进行交互的方法,也知道了Beauti ...
- Microsoft Edge 浏览器开始支持webkit私有样式
微软表示新版的浏览器Edge(spartan)不会再增加新的私有属性,同时移除了部分-ms-属性,但很多标准在没有支持到之前,会使用webkit的api.Edge开发工程师Jacob Rossi列出了 ...
- SVG Sprite 使用Symbol元素制作ICON
介绍 SVG是一种全新的使用方式,应该说这才是未来的主流,也是平台目前推荐的用法.之前写过两篇关于CSS icon在页面显示的博客,后来了解到现在大多数前端团队和项目都在使用SVG Sprite这种方 ...
- 【Paper】Deep & Cross Network for Ad Click Predictions
目录 背景 相关工作 主要贡献 核心思想 Embedding和Stacking层 交叉网络(Cross Network) 深度网络(Deep Network) 组合层(Combination Laye ...
- 6.azkban的监控
azkaban自带的监控flow自带的邮件功能SLA总结写程序监控job情况监控azkaban的元数据库使用azkaban API监控总结 azkaban自带的监控 azkban目前仅仅支持邮件监控, ...
- apache访问403错误
1.排查selinux 2.目录权限 3.WEB主目录是否正确
- StrBlobPtr类——weak_ptr访问vector元素
#include <iostream> #include <memory> #include <string> #include <initializer_l ...