问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) &=& b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0, \end{eqnarray*} 其中 \(a_nb_m\neq 0\), \(n\geq 1\), \(m\geq 1\). 设 \(t\) 为实变元, \[g_t(x)=b_mx^m+(b_{m-1}+t)x^{m-1}+\cdots+(b_1+t^{m-1})x+(b_0+t^m).\] 证明: 存在正数 \(\delta\), 使得对任意的 \(0<|t|<\delta\), \(f(x)\) 都与 \(g_t(x)\) 互素.

  事实上, \(g_t(x)\) 是 \(g(x)\) 的扰动, 即 \(g_0(x)=g(x)\). 上述问题告诉我们, 即使 \(f(x)\) 与 \(g(x)\) 不互素, 我们也可以做一个微小的扰动 \(g_t(x)\), 使得 \(f(x)\) 与 \(g_t(x)\) 互素.

[问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)的更多相关文章

  1. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  2. [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)

    [问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线 ...

  3. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  4. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

  5. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  6. 复旦高等代数II(18级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...

  7. 复旦高等代数II(16级)每周一题

    每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...

  8. [问题2014S07] 复旦高等代数II(13级)每周一题(第七教学周)

    [问题2014S07]  设 \(A\in M_n(\mathbb{K})\) 在数域 \(\mathbb{K}\) 上的初等因子组为 \(P_1(\lambda)^{e_1},P_2(\lambda ...

  9. [问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)

    [问题2014S08]  设分块上三角阵 \[A=\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},\] 其中 \(m\) 阶方阵 \( ...

随机推荐

  1. 20145337 《Java程序设计》第10周学习总结

    20145337 <Java程序设计>第10周学习总结 教材学习内容总结 网络编程 网络编程的实质就是两个(或多个)设备(例如计算机)之间的数据传输. 路由器和交换机组成了核心的计算机网络 ...

  2. 20145337 《Java程序设计》第六周学习总结

    20145337 <Java程序设计>第六周学习总结 教材学习内容总结 输入\输出 InputStream与OutputStream 从应用程序角度来看,如果要将数据从来源取出,可以使用输 ...

  3. 自己用node.js 搭建APP服务器,然后用AFNetworking 请求 报如下错误:App TransportSecurity has blocked a cleartext HTTP (http://) resource load since it isinsecure. Temporary exceptions can be configured via your app's Info.

    "App TransportSecurity has blocked a cleartext HTTP (http://) resource load since it isinsecure ...

  4. 给RecyclerView实现的GridView加上HeaderView和FooterView

    给RecyclerView设置布局管理器 GridLayoutManager gridLayoutManager = new GridLayoutManager(this, 3); 写适配器,添加子项 ...

  5. 蓝牙物理链路类型:SCO和ACL链路

    蓝牙物理链路ACL(Asynchronous Connectionless), 另外的一种链路是SCO(Synchronous Connection Oriented)主要用来传输对时间要求很高的数据 ...

  6. web页面隐藏鼠标

    Java web项目需求需要做一个在页面中,鼠标隐藏,来浏览页面,让客户不能点金页面 重要代码: $('*').css('cursor','none!important'); 示例: <styl ...

  7. centos7下快速安装mysql

    CentOS 7的yum源中貌似没有正常安装MySQL时的mysql-sever文件,需要去官网上下载 # wget http://dev.mysql.com/get/mysql-community- ...

  8. Inside Flask - signal 信号机制

    Inside Flask - signal 信号机制 singal 在平常的 flask web 开发过程中较少接触到,但对于使用 flask 进行框架级别的开发时,则必须了解相关的工作机制.flas ...

  9. 修改easyui中datagrid表头和数据不能分开对齐的BUG。

    easyui的datagrid中表头和列只能同时全部向左对齐,全部向右对齐或者居中对齐. 有时候有需求,数据向左或向右,表头居中对齐. 在不修改源码的情况下.下面的代码可以实现该功能. 把下面代码放在 ...

  10. 清除div中内容

    $.ajax({            url: "SearchSN.aspx",            data: "SN=" + $("#txtS ...