问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) &=& b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0, \end{eqnarray*} 其中 \(a_nb_m\neq 0\), \(n\geq 1\), \(m\geq 1\). 设 \(t\) 为实变元, \[g_t(x)=b_mx^m+(b_{m-1}+t)x^{m-1}+\cdots+(b_1+t^{m-1})x+(b_0+t^m).\] 证明: 存在正数 \(\delta\), 使得对任意的 \(0<|t|<\delta\), \(f(x)\) 都与 \(g_t(x)\) 互素.

  事实上, \(g_t(x)\) 是 \(g(x)\) 的扰动, 即 \(g_0(x)=g(x)\). 上述问题告诉我们, 即使 \(f(x)\) 与 \(g(x)\) 不互素, 我们也可以做一个微小的扰动 \(g_t(x)\), 使得 \(f(x)\) 与 \(g_t(x)\) 互素.

[问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)的更多相关文章

  1. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  2. [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)

    [问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线 ...

  3. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  4. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

  5. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

  6. 复旦高等代数II(18级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...

  7. 复旦高等代数II(16级)每周一题

    每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...

  8. [问题2014S07] 复旦高等代数II(13级)每周一题(第七教学周)

    [问题2014S07]  设 \(A\in M_n(\mathbb{K})\) 在数域 \(\mathbb{K}\) 上的初等因子组为 \(P_1(\lambda)^{e_1},P_2(\lambda ...

  9. [问题2014S08] 复旦高等代数II(13级)每周一题(第八教学周)

    [问题2014S08]  设分块上三角阵 \[A=\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},\] 其中 \(m\) 阶方阵 \( ...

随机推荐

  1. IOS第15天(1,事件处理View的拖拽)

    *******view 一些方法 #import "HMView.h" @implementation HMView // 一个完整的触摸过程 // touchesBegan -& ...

  2. 安卓中級教程(1):@InjectView

    package com.mycompany.hungry; import android.annotation.SuppressLint; import android.app.Activity; i ...

  3. angular+ckeditor最后上传的最后一张图片不会被添加(bug)

    做法一: angularJs+ckeditor 一.页面 <textarea ckeditor required name="topicContent" ng-model=& ...

  4. 奥迪--A6L

    -型号:A6L -价格:42-75W -动力:1.8T/2.5L/3T -变速箱:7挡双离合/CVT无级变速/7挡双离合 -长宽高:5.04,1.87,1.47 -油箱:75L -发动机:EA888 ...

  5. PSR : php编码规范

    诸王混战 关于开发标准这块,可以说一直都是风格迥异,各家都有各家的玩法,民间更是个人玩个人的.目前我们国内比较出名的几个框架(Yii,Laravel) 都已经支持Composer并且加入了PHP-FI ...

  6. freemarker学习

    链接: http://swiftlet.net/archives/category/freemarker

  7. angularJs内置指令63个

  8. ionic获取焦点

    功能需求:点击按钮后获取input输入框的焦点 获取焦点用jq focus()不成功,因为angular也不推荐,所以网上找了一个在focus封装成指令的方法 指令写法: .directive('my ...

  9. SQL Server代理警报

    使用SQL Server代理警报的前提条件1.创建操作员,接收消息的用户2.创建警报,满足某种条件触发警报,并作出响应(执行作业或/和通知操作员)3.配置数据库邮件,用于发送消息通知4.SQL Ser ...

  10. 线性时间的排序算法--桶排序(以leetcode164. Maximum Gap为例讲解)

    前言 在比较排序的算法中,快速排序的性能最佳,时间复杂度是O(N*logN).因此,在使用比较排序时,时间复杂度的下限就是O(N*logN).而桶排序的时间复杂度是O(N+C),因为它的实现并不是基于 ...