题目

我太\(zz\)了

有一个非常显然的问题就是一个植物显然能保护同一行上比它更靠后的植物,因为显然得先干掉更靠前的植物

首先可以看出来这是一个经典的最大权闭合子图的模型,于是去套最小割

发现植物的收益有正有负,于是想到正的和源点连边,负的和汇点连边

我们再来考虑一个植物没有被割掉的的状态

显然是和源点的那条边没被割掉,所以这个植物应该向保护它的植物连边,连代价为\(inf\)的边,想要保留和源点的边就必须去割掉这些连出去的边指向的植物到汇点的边

但是发现这样连样例都过不了

因为有一些植物非常神仙,自己保护自己,还有一些植物被神仙的植物保护,还有一些植物互相保护成了一个环

这些无敌的植物根本干不掉,于是不能算到最大权闭合子图里

于是我们要搞一个拓扑排序,把环里的点都给干掉

之后连边最小割就好了,记得把重边去掉

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#define maxn 605
#define re register
#define LL long long
#define inf 999999999
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
struct E{int v,nxt,f,w;}e[maxn*maxn*2];
int n,m,S,T,num=1,ans,tot;
int head[maxn],d[maxn],cur[maxn];
int q[maxn],r[maxn],map[maxn][maxn];
std::vector<int> v[maxn];
std::vector<int> x[21][31],y[21][31];
int val[21][31],to[21][31];
inline void add(int x,int y,int z) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=z;}
inline void C(int x,int y,int z) {add(x,y,z),add(y,x,0);}
inline char gc()
{
static char buff[1000000],*S=buff,*T=buff;
return S==T&&(T=(S=buff)+fread(buff,1,1000000,stdin),S==T)?EOF:*S++;
}
inline int read()
{
char c=gc();int x=0,r=1;while(c<'0'||c>'9') {if(c=='-') r=-1;c=gc();}
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=gc();
return x*r;
}
inline int BFS()
{
std::queue<int> q;
for(re int i=S;i<=T;i++) d[i]=0,cur[i]=head[i];
d[S]=1,q.push(S);
while(!q.empty())
{
int k=q.front();q.pop();
for(re int i=head[k];i;i=e[i].nxt)
if(!d[e[i].v]&&e[i].w>e[i].f) d[e[i].v]=d[k]+1,q.push(e[i].v);
}
return d[T];
}
int dfs(int x,int now)
{
if(x==T||!now) return now;
int ff,flow=0;
for(re int& i=cur[x];i;i=e[i].nxt)
if(d[e[i].v]==d[x]+1)
{
ff=dfs(e[i].v,min(now,e[i].w-e[i].f));
if(ff<=0) continue;
flow+=ff,now-=ff;
e[i].f+=ff,e[i^1].f-=ff;
if(!now) break;
}
return flow;
}
int main()
{
n=read(),m=read();
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
{
val[i][j]=read();
to[i][j]=(i-1)*m+j;
if(j>1) v[to[i][j]].push_back(to[i][j-1]),r[to[i][j-1]]++;
int t=read();int X,Y;
for(re int k=0;k<t;k++) X=read()+1,Y=read()+1,x[i][j].push_back(X),y[i][j].push_back(Y);
}
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
for(re int k=0;k<x[i][j].size();k++)
{
int xx=x[i][j][k],yy=y[i][j][k];
for(re int t=1;t<=yy;t++) r[to[xx][t]]++,v[to[i][j]].push_back(to[xx][t]);
}
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
if(!r[to[i][j]]) q[++tot]=to[i][j];
for(re int i=1;i<=tot;i++)
for(re int j=0;j<v[q[i]].size();j++)
{
r[v[q[i]][j]]--;
if(!r[v[q[i]][j]]) q[++tot]=v[q[i]][j];
}
S=0,T=n*m+1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
{
if(r[to[i][j]]) continue;
if(val[i][j]<0) C(to[i][j],T,-1*val[i][j]);
else C(S,to[i][j],val[i][j]),ans+=val[i][j];
for(re int k=0;k<v[to[i][j]].size();k++)
if(!r[v[to[i][j]][k]]&&!map[v[to[i][j]][k]][to[i][j]])
map[v[to[i][j]][k]][to[i][j]]=1,C(v[to[i][j]][k],to[i][j],inf);
}
while(BFS()) ans-=dfs(S,inf);
printf("%d\n",ans);
return 0;
}

【[NOI2009]植物大战僵尸】的更多相关文章

  1. 图论(网络流):COGS 410. [NOI2009] 植物大战僵尸

    410. [NOI2009] 植物大战僵尸 ★★★   输入文件:pvz.in   输出文件:pvz.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] Plants vs ...

  2. P2805 [NOI2009]植物大战僵尸

    题目地址:P2805 [NOI2009]植物大战僵尸 最大权闭合子图 若有向图 \(G\) 的子图 \(V\) 满足: \(V\) 中顶点的所有出边均指向 \(V\) 内部的顶点,则称 \(V\) 是 ...

  3. COGS410. [NOI2009] 植物大战僵尸

    410. [NOI2009] 植物大战僵尸 ★★★   输入文件:pvz.in   输出文件:pvz.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] Plants vs ...

  4. BZOJ 1565: [NOI2009]植物大战僵尸

    1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2317  Solved: 1071[Submit][Stat ...

  5. 【刷题】BZOJ 1565 [NOI2009]植物大战僵尸

    Description Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏.Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻. ...

  6. 【bzoj1565】[NOI2009]植物大战僵尸

    1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2164  Solved: 1001[Submit][Stat ...

  7. 【最大权闭合子图 tarjan】bzoj1565: [NOI2009]植物大战僵尸

    dinic+tarjan板子练手题 Description Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏.Plants(植物)和Zombies(僵尸)是游戏的主角,其 中P ...

  8. BZOJ1565: [NOI2009]植物大战僵尸

    Description Input Output 仅包含一个整数,表示可以获得的最大能源收入.注意,你也可以选择不进行任何攻击,这样能源收入为0. Sample Input 3 2 10 0 20 0 ...

  9. 【bzoj1565】 NOI2009—植物大战僵尸

    http://www.lydsy.com/JudgeOnline/problem.php?id=1565 (题目链接) 题意 给出$n*m$的棋盘,僵尸攻击每个格子可以获得$v$的分数,每个格子又会保 ...

  10. luogu2805 [NOI2009]植物大战僵尸

    想象一下,要搞掉一个植物,必须先搞掉另一些植物--我们可以发现这是一个最大权闭合子图的问题. 最大权闭合子图的话,太空飞行计划问题是一个入门题,可以一看. 然而我们手玩一下样例就会惊恐地发现,保护关系 ...

随机推荐

  1. Oracle RAC集群搭建(末篇)--dbca建库

    一,环境配置检测 当前位置oracle用户 二,dbca建库 运行命令dbca 根据实际情况配置 等待完成 本次内容教程完成 查看IP信息

  2. Django From表单定制

    参考文档: Forms The Forms API Working with forms 一.简单的Form表达定制 1)首先我们得定制Form表单类,下面我们创建一个简单的类: class Book ...

  3. (转) CentOS 7添加开机启动服务/脚本

    CentOS 7添加开机启动服务/脚本 原文:http://blog.csdn.net/wang123459/article/details/79063703 一.添加开机自启服务 在CentOS 7 ...

  4. (转)shell脚本之文件测试操作符及整数比较符

    shell脚本之文件测试操作符及整数比较符 原文:http://www.cnblogs.com/Steward-Xu/p/6722592.html 一.文件测试操作符: 在书写测试表达式是,可以使用一 ...

  5. cloudera manager的7180 web界面访问不了的解决办法(图文详解)

    说在前面的话 我的机器是总共4台,分别为ubuntucmbigdata1.ubuntucmbigdata2.ubuntucmbigdata3和ubuntucmbigdata4.(注意啦,以下是针对Ub ...

  6. c#委托、泛型、反射的使用情况

    委托:当你传递的参数不是 变量 时,想把一个方法作为参数传递,此时委托就可以做到这点 泛型:当你传递的参数是一个类时,此时用泛型 反射:都说反射是一种耗时的操作,但是却很有用,所以反射他不是拿来滥用的 ...

  7. MATLAB-R2015b-win64安装详细教程

    1.首先下载以下文件 链接:https://pan.baidu.com/s/1eRAOKZw 密码:5nkj 2.双击R2015b_win64.iso打开(win8,win8.1,win10均可直接打 ...

  8. win7 docker的受难记——exit status 255的终极解决

    一 我真的认识到我有很多坏习惯,而这次坏就坏在我老是用Docker Quickstart Terminal,而不直接用cmd. 毕竟Docker Quickstart Terminal看属性就是cmd ...

  9. AtCoder Grand Contest 023 F - 01 on Tree

    Description 题面 Solution HNOI-day2-t2 复制上去,删点东西,即可 \(AC\) #include<bits/stdc++.h> using namespa ...

  10. div居中方法总结

    在日常开发过程中,我们会经常使用到div居中来处理布局,今天我就把我在开发过程中,遇到的div居中处理方法总结一下,方便日后查看!        1. 水平居中:给div设置一个宽度,然后添加marg ...