原题传送门

题目分析

  • 现有n个人在东岸,要过河去西岸。开始东岸有一艘船,船最多可承载2人,过河时间以耗时最长的人所需时间为准。

    给定n个人的过河时间a,求所有人从东岸到西岸所需的最短时间。

  • 当\(n=2\)时,易得答案为\(a[2]\)。但问题在于当\(n>2\)如何解决。

贪心分析

  • 对所有数据从小到大排序。

  • 从小规模数据出发,当\(n=3\)时,不难想到可以先用\(a[1]\)将\(a[3]\)送过去,再让\(a[1]\)回来,这样就回归了\(n=2\)的情况。

  • \(n>3\)时情况略为复杂,我们考虑推导问题的几个简单性质。

    1. 对于每次船在西岸时,如果需要某个人将船送回来,则优先让西岸a最小的\(dalao\)回来。

      证明:假设西岸有过河时间\(a[1],a[2],a[3]\)的三个人,则让\(a[1]\)回来,必然导致东岸后续的子问题最优。

      如此便得到一个简单的贪心,我们便无需考虑回来的情况,只需要思考如何将人送过去。

      重要推论:在问题结束前,不甘寂寞的\(dalao\) \(a[1]\)不可能被留在西岸。也就是说,\(a[1]\)只要过去,就必然要将船送回来。

    2. 对于\(4<=i<=n\)的所有\(a[i-1]\),它到西岸只有两种可能方式:自己和\(a[1]\)过去,或者自己和\(a[i]\)过去。

      对于第一种方式:就相当于\(a[i-1]\)自己过去,\(a[1]\)负责送船回来,代价\(a[i-1]+a[1]\)。

      对于第二种方式:如果不希望\(a[i-1]\)被贡献到答案中,则只能选择一个\(j>i-1\)的小蒟蒻\(a[j]\)来当\(a[i-1]\)的拖油瓶。

      但问题在于,过弱的蒟蒻\(a[j]\)不能和\(dalao\) \(a[i-1]\)玩,或者说\(dalao\) \(a[i-1]\)不能选择太弱的\(a[j]\)来当拖油瓶,否则代价会过大。因此\(a[i-1]\)只能选择\(a[i]\)来当它的拖油瓶。

      那么两人过去以后,谁给他们送船回来呢?由于\(a[1]\)不可能在西岸等着他们,因此需要提前让\(a[1]\)带\(a[2]\)过去,留\(a[2]\)为他们送船。代价\(a[2]+a[1]+a[i]+a[2]\)。

    3. 由此,我们可以得到状态转移方程:$$f[i]=min(f[i-1]+a[i]+a[1],f[i-2]+a[2]+a[1]+a[i]+a[2])$$

    4. 几乎每一篇题解都提到了这个方程,那么问题来了,为什么\(f[i]\)由\(f[i-1]和f[i-2]\)中取一转移即可,而不能继续考虑到\(f[i-3]\)?

      我们考虑已知\(f[i-3]\),然后新来了三个蒟蒻,对于\(a[i-2]\),他不可能会带\(a[i]\)过河,也就是要么自己走,要么带\(a[i-1]\)走。也就是说\(a[i-2]\)的决策与\(a[i]\)无关。

      因此求\(f[i]\)时,只要考虑\(a[i-1]\)的决策即可,也就是从\(f[i-1]\)和\(f[i-2]\)两个状态中取一转移即可。

code:

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=100010;
int n,a[MAXN],f[MAXN]; int main()
{
// freopen("in.txt","r",stdin); scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",a+i); f[1]=a[1];
f[2]=a[2];
f[3]=a[3]+a[1]+a[2]; for(int i=4;i<=n;++i)f[i]=min(f[i-1]+a[i]+a[1],f[i-2]+a[2]+a[1]+a[i]+a[2]); printf("%d\n",f[n]);
return 0;
}

【题解】p1809 过河问题的更多相关文章

  1. 贪心—— P1809 过河问题_NOI导刊2011提高(01)

    洛谷——P1809 过河问题_NOI导刊2011提高(01) 题目描述 有一个大晴天,Oliver与同学们一共N人出游,他们走到一条河的东岸边,想要过河到西岸.而东岸边有一条小船. 船太小了,一次只能 ...

  2. 洛谷 P1809 过河问题 题解

    题面 这道题是一道贪心+DP的好题: 首先排序是一定要干的事情. 然后我们分情况处理: 1.如果剩一个人,让最小的回来接他 2.如果剩两个人,让最小的回来接,剩下的那两个人(即最大的两个人)过去,让次 ...

  3. 【P1809 过河问题】题解

    贪心,我们设时间序列为 \(\{a_i\}\),长度为 \(n\)(先排序 \(\{a_i\}\)). 分类讨论(其中的「\(1\)」「\(2\)」等均指「速度第 \(1\) 人」「速度第 \(2\) ...

  4. 洛谷P1809 过河问题 经典贪心问题

    作者:zifeiy 标签:贪心 题目链接:https://www.luogu.org/problem/P1809 我们假设第 \(i\) 个人过河的耗时是 \(t[i]\) ,并且 \(t[i]\) ...

  5. 洛谷P1809 过河问题_NOI导刊2011提高(01)

    To 洛谷.1809 过河问题 题目描述 有一个大晴天,Oliver与同学们一共N人出游,他们走到一条河的东岸边,想要过河到西岸.而东岸边有一条小船. 船太小了,一次只能乘坐两人.每个人都有一个渡河时 ...

  6. luogu P1809 过河问题_NOI导刊2011提高(01)

    题目描述 有一个大晴天,Oliver与同学们一共N人出游,他们走到一条河的东岸边,想要过河到西岸.而东岸边有一条小船. 船太小了,一次只能乘坐两人.每个人都有一个渡河时间T,船划到对岸的时间等于船上渡 ...

  7. P1809 过河问题_NOI导刊2011提高(01)

    题目描述 有一个大晴天,Oliver与同学们一共N人出游,他们走到一条河的东岸边,想要过河到西岸.而东岸边有一条小船. 船太小了,一次只能乘坐两人.每个人都有一个渡河时间T,船划到对岸的时间等于船上渡 ...

  8. [Codeforces]#179 div1-----295ABCDE

    摘自我的github:https://github.com/Anoxxx The Solution Source: Codeforces Round #179 (Div. 1) VJudge链接: h ...

  9. luoguP1502过河题解

    日常吐(fei)嘈(hua) 这道题作为最近卡了我3天的dp题(最后还是在题解的帮助下冥思苦想才过掉的题),窝觉得此题肥肠之脑洞,写此博客纪念 题解 过河 先来日常手玩样例: 咦感觉怎么手玩答案都像是 ...

随机推荐

  1. 一篇文章教会你用Python抓取抖音app热点数据

    今天给大家分享一篇简单的安卓app数据分析及抓取方法.以抖音为例,我们想要抓取抖音的热点榜数据. 要知道,这个数据是没有网页版的,只能从手机端下手. 首先我们要安装charles抓包APP数据,它是一 ...

  2. Flask 项目目录蓝图

    Flask 项目目录蓝图 小型项目 大型项目 定义蓝图 注册蓝图 template_folder="XXX" 参数是指 模板文件夹 注意 优先是找templates 在找自己指定的 ...

  3. Vue-websocket使用

    Vue中使用websocket 1.介绍:websocket是一个双向通行工具,解决了原来的http单向通信的弊端,可以让服务器主动向客户端推送数据 // 安装客户端的socket npm i soc ...

  4. TensorFlow从0到1之矩阵基本操作及其实现(7)

    矩阵运算,例如执行乘法.加法和减法,是任何神经网络中信号传播的重要操作.通常在计算中需要随机矩阵.零矩阵.一矩阵或者单位矩阵. 本节将告诉你如何获得不同类型的矩阵,以及如何对它们进行不同的矩阵处理操作 ...

  5. CentOS7.5搭建Hadoop2.7.6完全分布式集群

    一 完全分布式集群搭建 Hadoop官方地址:http://hadoop.apache.org/ 1  准备3台客户机 1.2 关闭防火墙,设置静态IP,主机名 关闭防火墙,设置静态IP,主机名此处略 ...

  6. springboot整合oss

    原文链接:https://blog.csdn.net/weixin_42370891/article/details/99102508 登录阿里云,进入到控制台 创建Bucket 导入如下依赖 < ...

  7. .Net Core 中GC的工作原理

    前言 .NET 中GC管理你服务的内存分配和释放,GC是运行公共语言运行时(CLR Common Language Runtime)中,GC可以帮助开发人员有效的分配内存和和释放内存,大多数情况下是不 ...

  8. centos 6.5 nat方式上网络设置

    1 前提虚拟机采用nat的方式和主机进行通信,这个时候再电脑上会模拟一个vmnet8网卡,如果是host-only对应的是vmnet1,配置一样 vmnet8的虚拟网卡,虚拟机通过vmnet8和主机之 ...

  9. C#数据结构与算法系列(十八):冒泡排序算法(BubbleSort)

    1.介绍 冒泡排序的基本思想就是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就像水底的气泡一样逐渐向上冒泡. 因为排序的 ...

  10. SpringBoot--使用Spring Cache整合redis

    一.简介 Spring Cache是Spring对缓存的封装,适用于 EHCache.Redis.Guava等缓存技术. 二.作用 主要是可以使用注解的方式来处理缓存,例如,我们使用redis缓存时, ...