http://www.lydsy.com/JudgeOnline/problem.php?id=1008

刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还是不会。。

看了题解,,太巧妙了!就是反过来想。。所有情况-不会越狱的情况=答案。。。。所有情况很好求,因为每个人都可以是任意种宗教,根据乘法原理,所有情况=m*m*m*m*...*m=m^n;而不会越狱的情况也很好求,因为约束只是临边的人不能是同种宗教,所以我们只要假设临边的人有m-1种选择,而这个临边的临边也只有m-1种选择,所以不会越狱的情况=m*(m-1)*(m-1)*(m-1)*...*(m-1)=m*(m-1)^(n-1)。

因为数据大,用快速幂,复杂度为logn。

这里要注意负数处理,因为m^n>m*(m-1)^(n-1),即a>b,所以(a-b)%c=(((a%c)+c)-(b%c))%c

#include <cstdio>
using namespace std;
typedef unsigned long long ull;
ull fastpow(ull a, ull b, int c) {
ull ret=1;
while(b) {
if(b&1) ret=(ret*a)%c;
a=(a*a)%c;
b>>=1;
}
return ret;
} int main() {
ull n, m;
scanf("%llu%llu", &m, &n);
printf("%llu\n", (fastpow(m, n, 100003)+100003-((ull)(m%100003)*fastpow(m-1, n-1, 100003))%100003)%100003);
return 0;
}

Description

监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

Input

输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

Output

可能越狱的状态数,模100003取余

Sample Input

2 3

Sample Output

6

HINT

6种状态为(000)(001)(011)(100)(110)(111)

Source

【BZOJ】1008: [HNOI2008]越狱(快速幂)的更多相关文章

  1. BZOJ 1008: [HNOI2008]越狱-快速幂/取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  2. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  3. [HNOI2008] 越狱 快速幂

    [HNOI2008] 越狱 快速幂 水.考虑不发生越狱的情况:即宗教相同的都不相邻,一号任意放\(m\)种宗教的人,此后\(n-1\)个房间都放与上一个宗教不同的人,有\(m-1\)种,所以共有\(m ...

  4. BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 10503  Solved: 4558[Submit][Status ...

  5. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  6. BZOJ 1008 [HNOI2008]越狱 排列组合

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4788  Solved: 2060[Submit][Status] ...

  7. BZOJ 1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5166  Solved: 2242[Submit][Status] ...

  8. bzoj 1008: [HNOI2008]越狱 数学

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 监狱有连 ...

  9. BZOJ1008 [HNOI2008]越狱 快速幂

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...

  10. BZOJ 1008: [HNOI2008]越狱【组合】

    很少有的思路秒解.题意可以描述成对长度为n的格子有m种染色方案,问存在相邻两个格子同色的方案数,正难则反易,考虑问题的背面任意两个相邻的格子都不同色,第一个格子可以涂任意一种颜色m种可能,剩下的n-1 ...

随机推荐

  1. 最长回文子串O(n)算法

    原文链接:英文版链接 首先,我们将字符串S中插入符号“#”转化成另一个字符串T. 比如:S = "abaaba",T = “#a#b#a#a#b#a#”. 为了找到最长回文字串,我 ...

  2. Linux下 ntp 时间同步服务ntpd 出现 the NTP socket is in use, exiting 解决

    [root@EPDDB log]# [root@EPDDB log]# ntpdate 10.154.8.200 6 Sep 09:35:09 ntpdate[30210]: the NTP sock ...

  3. HTML表单元素Emil和密码

    <form action="" method="post" name="myform"><p>E-mail:< ...

  4. Windbg程序调试--转载

    WinDbg是微软发布的一款相当优秀的源码级(source-level)调试工具,可以用于Kernel模式调试和用户模式调试,还可以调试Dump文件. WinDbg是微软很重要的诊断调试工具: 可以查 ...

  5. Objective-C 和 C++中指针的格式和.方法 和内存分配

    最近在看cocos2d-x,于是打算复习一下C++,在这里简单对比下,留个念想. 先看看oc中指针的用法 @interface ViewController : UIViewController { ...

  6. Light OJ 1199 - Partitioning Game (博弈sg函数)

    D - Partitioning Game Time Limit:4000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  7. Struts文件上传allowedTypes问题,烦人的“允许上传的文件类型”

    Struts的文件上传问题,相信很多人都会使用allowedTypes参数来配置允许上传的文件类型,如下. <param name="allowedTypes"> im ...

  8. javascript栈的建立样码

    早上参加小孩的一年级入学前,看看相关的东东啦.. function Stack() { var items = []; this.push = function(element){ items.pus ...

  9. [译] UML中的关系之Dependency

    在UML中,依赖关系表示Client依赖于另一个元素,叫做Supplier. 通常来说,依赖关系不需要特殊的名字. 依赖的类别 抽象 abstraction, derive, refine, trac ...

  10. 建模算法(一)——线性规划

    一.解决问题 主要是安排现有资源(一定),取得最好的效益的问题解决,而且约束条件都是线性的. 二.数学模型 1.一般数学模型 2.MATLAB数学模型 其中c,x都是列向量,A,Aeq是一个合适的矩阵 ...