HihoCoder 1398 网络流 - 最大权闭合子图
周末,小Hi和小Ho所在的班级决定举行一些班级建设活动。
根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值。
班级一共有M名学生(编号1..M),邀请编号为i的同学来参加班级建设活动需要消耗b[i]的活跃值。
每项活动都需要某些学生在场才能够进行,若其中有任意一个学生没有被邀请,这项活动就没有办法进行。
班级建设的活跃值是活动产生的总活跃值减去邀请学生所花费的活跃值。
小Hi和小Ho需要选择进行哪些活动,来保证班级建设的活跃值尽可能大。
比如有3项活动,4名学生:
第1项活动产生5的活跃值,需要编号为1、2的学生才能进行;
第2项活动产生10的活跃值,需要编号为3、4的学生才能进行;
第3项活动产生8的活跃值,需要编号为2、3、4的学生才能进行。
编号为1到4的学生需要消耗的活跃值分别为6、3、5、4。
假设举办活动集合为{1},需要邀请的学生集合为{1,2},则得到的班级活跃值为5-9 = -4。
假设举办活动集合为{2},需要邀请的学生集合为{3,4},则得到的班级活跃值为10-9 = 1。
假设举办活动集合为{2,3},需要邀请的学生集合为{2,3,4},则得到的班级活跃值为18-12 = 6。
假设举办活动集合为{1,2,3},需要邀请的学生集合为{1,2,3,4},则得到的班级活跃值为23-18 = 5。
小Hi和小Ho总是希望班级活跃值越大越好,因此在这个例子中,他们会选择举行活动2和活动3。
输入
第1行:两个正整数N,M。1≤N≤200,1≤M≤200
第2行:M个正整数,第i个数表示邀请编号为i的学生需要花费的活跃值b[i],1≤b[i]≤1,000
第3..N+2行:第i行表示编号为i的活动情况。首先是2个整数a,k,a表示该活动产生的活跃值,k表示该活动需要的学生人数。接下来k个整数列举该活动需要的学生编号。1≤a≤1,000,1≤k≤M
输出
第1行:1个整数,最大可以产生的班级活跃值
Sample Input
3 4
6 3 5 4
5 2 1 2
10 2 3 4
8 3 2 3 4
Sample Output
6
题解:最大权闭合子图裸题; 最大权闭合子图=正权点的和-最小割=正权点的和-最大流;(水题)
参考代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#include<set>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
#define PI acos(-1.0)
#define eps 1e-8
#define mem(a,b) memset(a,b,sizeof a)
const int INF=0x3f3f3f3f;
const LL inf=0x3f3f3f3f3f3f3f3fLL;
typedef pair<int,int> P;
const int maxn=;
int n,m,s,t,a,k,val;
struct Edge{
int from,to,cap,flow;
Edge(int _f,int _t,int _c,int _fl):from(_f),to(_t),cap(_c),flow(_fl) { }
};
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn],cur[maxn]; void Init()
{
mem(d,);
for(int i=;i<=n;i++) G[i].clear();
} void Addedge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));
int m=edges.size();
G[from].push_back(m-); G[to].push_back(m-);
} bool bfs()
{
mem(vis,);
queue<int> q;
q.push(s);
d[s]=; vis[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=;i<G[x].size();i++)
{
Edge &e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
} int dfs(int x,int a)
{
if(x==t || a==) return a;
int flow=,f;
for(int &i=cur[x];i<G[x].size();++i)
{
Edge &e=edges[G[x][i]];
if(d[e.to]==d[x]+ && (f=dfs(e.to,min(a,e.cap-e.flow)))>)
{
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f; a-=f;
if(a==) break;
}
}
return flow;
} int Maxflow(int s,int t)
{
int flow=;
while(bfs())
{
mem(cur,);
flow+=dfs(s,INF);
}
return flow;
} int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
int sum=,num;
for(int i=;i<=m;i++) cin>>val,Addedge(n+i,m+n+,val);
for(int i=;i<=n;i++)
{
cin>>val>>k;
sum+=val;
Addedge(,i,val);
for(int j=;j<=k;j++)
{
cin>>num;
Addedge(i,n+num,INF);
}
}
s=,t=n+m+;
int ans=sum-Maxflow(s,t);
cout<<ans<<endl;
return ;
}
HihoCoder 1398 网络流 - 最大权闭合子图的更多相关文章
- BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图
链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当 ...
- 【BZOJ1565】【NOI2009】植物大战僵尸 网络流 最大权闭合子图
题目大意 给你一个\(n\times m\)的地图,每个格子上都有一颗植物,有的植物能保护其他植物.僵尸从右往左进攻,每吃掉一颗植物就可以得到\(a_{i,j}\)的收益(\(a_{i,j}\)可 ...
- FZU - 2295 Human life:网络流-最大权闭合子图-二进制优化-第九届福建省大学生程序设计竞赛
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 http://acm.fzu.edu.cn/problem.php?pid=2295 htt ...
- hiho# 1398 最大权闭合子图 网络流
题目传送门 题意:给出n个活动,m个人,请人需要花费$a[i]$的钱,举办一次活动可以赚$b[i]$的钱,但是需要固定的几个人在场,一个人只需要请一次后就必定在场,问最大收益. 思路: 下列结论来自h ...
- [HIHO119]网络流五·最大权闭合子图(最大流)
题目链接:http://hihocoder.com/contest/hiho119/problem/1 题意:中文题意. 由于1≤N≤200,1≤M≤200.最极端情况就是中间所有边都是满的,一共有N ...
- [HihoCoder1398]网络流五·最大权闭合子图
题目大意:有$N$项活动$M$个人,每个活动$act_i$有一个正的权值$a_i$,每个人$stu_i$有一个负的权值$b_i$.每项活动能够被完成当且仅当该项活动所需的所有人到场.如何选择活动使最终 ...
- hihocoder1398 网络流五之最大权闭合子图
最大权闭合子图 虽然我自己现在总结不好最大权闭合子图.但也算稍稍理解辣. 网络流起步ing~~~(- ̄▽ ̄)- #include<iostream> #include<cstdio& ...
- Cogs 727. [网络流24题] 太空飞行计划(最大权闭合子图)
[网络流24题] 太空飞行计划 ★★☆ 输入文件:shuttle.in 输出文件:shuttle.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] W 教授正在为国家航天中心计 ...
- bzoj1391 最大权闭合子图(also最小割、网络流)
一道裸的最小割的题,写一下只是练练手. 表示被卡M,RE不开心.一道裸题至于吗? 再次复习一下最大权闭合子图: 1.每一个点若为正权,与源点连一条容量为绝对值权值的边.否则连向汇点一条容量为绝对值权值 ...
随机推荐
- SpringBoot系列之@Conditional注解用法简介
SpringBoot系列之@Conditional注解用法简介 引用Spring官方文档的说法介绍一下@Conditional注解:Spring5.0.15版本@Conditional注解官方文档 @ ...
- Deepin 下 使用 Rider 开发 .NET Core
Deepin 下 使用 Rider 开发 .NET Core 国产的 Deepin 不错,安利一下. Deepin 用了也有一两年,也只是玩玩,没用在开发上面.后来 Win10 不太清真了,就想着能不 ...
- 反射与泛型--使用泛型反射API打印出给定类的所有内容
package chapter8Demos; import java.lang.reflect.*; import java.util.Arrays; import java.util.Scanner ...
- C++中对C的扩展学习新增语法——lambda 表达式(匿名函数)
1.匿名函数基础语法.调用.保存 1.auto lambda类型 2.函数指针来保存注意点:[]只能为空,不能写东西 3.std::function来保存 2.匿名函数捕捉外部变量(值方式.引用方式) ...
- C语言|博客作业09
这个作业属于哪个课程 C语言程序设计II 这个作业的要求在哪里 https://edu.cnblogs.com/campus/zswxy/CST2019-1/homework/10027 我在这个课程 ...
- 记录工作遇到的死锁问题(Lock wait timeout exceeded; try restarting transaction)
1.问题背景 刚来新公司不久,对业务还不太熟悉,所以领导先安排我维护原有系统.大概介绍下项目背景,项目分为核心业务部分在项目A中,与第三方交互的业务在项目B中,前端发起请求调用A项目接口,并在A项目中 ...
- ES6扩展运算符...
对象的扩展运算符理解对象的扩展运算符其实很简单,只要记住一句话就可以: 对象中的扩展运算符(...)用于取出参数对象中的所有可遍历属性,拷贝到当前对象之中 let bar = { a: 1, b: 2 ...
- 【Luogu P1439】最长公共子序列(LCS)
Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...
- 2sql
------------------------------------ 高级查询-- as 起别名select name as 名字 from studnets;-- 消除重复的行 -- 查看有哪几 ...
- 聚类-K-Means
1.什么是K-Means? K均值算法聚类 关键词:K个种子,均值聚类的概念:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一个簇中 K-Means算法是一种聚类分析(cluster ana ...