《DSP using MATLAB》Problem 7.29

代码:
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
%% Output Info about this m-file
fprintf('\n***********************************************************\n');
fprintf(' <DSP using MATLAB> Problem 7.29 \n\n'); banner();
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % bandpass
ws1 = 0.25*pi; wp1 = 0.4*pi; wp2 = 0.6*pi; ws2 = 0.75*pi;
As = 50; Rp = 1; [delta1, delta2] = db2delta(Rp, As);
deltaH = max(delta1,delta2); deltaL = min(delta1,delta2); f = [ws1, wp1, wp2, ws2]/pi; m = [0, 1, 0]; delta = [delta2, delta1, delta2]; [N, f, m, weights] = firpmord(f, m, delta);
N h = firpm(N, f, m, weights);
[db, mag, pha, grd, w] = freqz_m(h, [1]);
delta_w = 2*pi/1000;
ws1i = floor(ws1/delta_w)+1; wp1i = floor(wp1/delta_w)+1;
ws2i = floor(ws2/delta_w)+1; wp2i = floor(wp2/delta_w)+1; Asd = -max(db(1:1:ws1i)) N = N + 2 % Length M=25
h = firpm(N, f, m, weights); [db, mag, pha, grd, w] = freqz_m(h, [1]);
Asd = -max(db(1:1:ws1i)) M = N + 1
l = 0:M-1;
%% --------------------------------------------------
%% Type-1 BPF
%% --------------------------------------------------
[Hr, ww, a, L] = Hr_Type1(h); Rp = -(min(db(floor(wp1/delta_w)+1 :1: floor(wp2/delta_w)))); % Actual Passband Ripple
fprintf('\nActual Passband Ripple is %.4f dB.\n', Rp); As = -round(max(db(floor(ws2/delta_w)+1 : 1 : 501))); % Min Stopband attenuation
fprintf('\nMin Stopband attenuation is %.4f dB.\n', As); [delta1_db, delta2_db] = db2delta(Rp, As) % Plot
figure('NumberTitle', 'off', 'Name', 'Problem 7.29 h(n), Parks-McClellan Method')
set(gcf,'Color','white');
subplot(2,2,1); stem([0:M-1], h); axis([0 M-1 -0.5 0.5]); grid on;
xlabel('n'); ylabel('h(n)'); title('Actual Impulse Response, M=25'); subplot(2,2,2); plot(w/pi, db); axis([0 1 -90 10]); grid on;
set(gca,'YTickMode','manual','YTick',[-53,-9,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['53';' 9';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.33,0.4,0.6,0.66,0.75,1]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(ww/pi, Hr); axis([0, 1, -0.2, 1.2]); grid on;
xlabel('frequency in \pi nuits'); ylabel('Hr(w)'); title('Amplitude Response');
set(gca,'XTickMode','manual','XTick',[0,0.25,0.33,0.4,0.6,0.66,0.75,1])
set(gca,'YTickMode','manual','YTick',[0,1]); subplot(2,2,4);
sb1w = ww(1:1:ws1i)/pi; sb1e = Hr(1:1:ws1i);
pbw = ww(wp1i:wp2i)/pi; pbe = Hr(wp1i:wp2i)-1;
sb2w = ww(ws2i:501)/pi; sb2e = Hr(ws2i:501);
plot(sb1w,sb1e,pbw,pbe*(delta2/delta1),sb2w,sb2e); % weighted error
%plot(sb1w,sb1e,pbw,pbe,sb2w,sb2e); % error axis([0, 1, -deltaL, deltaL]); grid on;
xlabel('frequency in \pi units'); ylabel('Hr(w)');
title('Weighted Error');
%title('Error Response');
set(gca,'XTickMode','manual','XTick',f)
set(gca,'YTickMode','manual','YTick',[-deltaL, 0,deltaL]);
set(gca,'XGrid','on','YGrid','on') figure('NumberTitle', 'off', 'Name', 'Problem 7.29a Parks-McClellan Method')
set(gcf,'Color','white');
subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -90 10]);
set(gca,'YTickMode','manual','YTick',[-53,-9,0])
set(gca,'YTickLabelMode','manual','YTickLabel',['53';' 9';' 0']);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.4,0.6,0.75,1,1.25,1.4,1.6,1.75,2]);
xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB'); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
set(gca,'XTickMode','manual','XTick',[0,0.25,0.4,0.6,0.75,1,1.25,1.4,1.6,1.75,2]);
set(gca,'YTickMode','manual','YTick',[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay'); figure('NumberTitle', 'off', 'Name', 'Problem 7.29 AmpRes of h(n), Parks-McClellan Method')
set(gcf,'Color','white'); plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]);
xlabel('frequency in \pi units'); ylabel('Hr'); title('Amplitude Response');
set(gca,'YTickMode','manual','YTick',[-delta2_db ,0,delta2_db , 1-delta1_db, 1, 1+delta1_db]);
set(gca,'XTickMode','manual','XTick',[0,0.25,0.4,0.6,0.75,1]);
运行结果:
阶数N=22时,阻带衰减43dB,不满足要求。
所以增大N,当N=24时,As=52dB,滤波器长度M=25







《DSP using MATLAB》Problem 7.29的更多相关文章
- 《DSP using MATLAB》Problem 8.29
来汉有一月,往日的高温由于最近几个台风沿海登陆影响,今天终于下雨了,凉爽了几个小时. 接着做题. %% ------------------------------------------------ ...
- 《DSP using MATLAB》Problem 5.30
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 8.28
代码: %% ------------------------------------------------------------------------ %% Output Info about ...
- 《DSP using MATLAB》Problem 8.27
7月底,又一个夏天,又一个火热的夏天,来到火炉城武汉,天天高温橙色预警,到今天已有二十多天. 先看看住的地方 下雨的时候是这样的 接着做题 代码: %% ----------------------- ...
- 《DSP using MATLAB》Problem 8.26
代码: %% ------------------------------------------------------------------------ %% Output Info about ...
- 《DSP using MATLAB》Problem 7.27
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.26
注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.25
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.24
又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...
随机推荐
- 根据Cron表达式,通过Spring自带的CronSequenceGenerator类获取下次执行时间
Cron表达式通常用于执行一些定时任务,在本篇文章中,暂时不会记录如何根据Cron表达式来执行一些定时任务.本章主要的目的是根据Cron表达式,通过Spring自带的CronSequenceGener ...
- js文件操作之——导出Excel (js-xlsx)
前阵子跟server同学讨论一个Excel导出的需求,我说JS搞不定,需要server来做,被server同学强行打脸. 今天研究了下,尼玛,不光可以,还很强大了! 总结:经验是害人的,尤其是在发展迅 ...
- ubuntu常见错误–Could not get lock /var/lib/dpkg/lock解决
ubuntu常见错误–Could not get lock /var/lib/dpkg/lock解决 通过终端安装程序sudo apt-get install xxx时出错: E: C ...
- java8 新特性学习笔记
Java8新特性 学习笔记 1主要内容 Lambda 表达式 函数式接口 方法引用与构造器引用 Stream API 接口中的默认方法与静态方法 新时间日期 API 其他新特性 2 简洁 速度更快 修 ...
- 论文阅读-(ECCV 2018) Second-order Democratic Aggregation
本文是Tsung-Yu Lin大神所作(B-CNN一作),主要是探究了一种无序的池化方法\(\gamma\) -democratic aggregators,可以最小化干扰信息或者对二阶特征的内容均等 ...
- eclipse-帮助文档
Eclipse开发环境配置 1. java环境 安装 本系统使用java6开发,老师使用1.6.0 _45版本开发,如下图所示: “开发工具”目录提供了1.6.0 _45版本32位和6 ...
- [Noip 2013 Day1-3] 货车运输 做法总结
[Noip 2013 Day1-3] 货车运输 做法总结 Online Judge:Luogu-1967 Label:启发式合并,离线,整体二分,按秩合并,倍增,最大生成树 打模拟离线赛时做到,顺便总 ...
- Android 开发 MediaRecorder视频录制入门
前言 MediaRecorder是Android SDK提供用于录制音视频,关于音频的录制在我另一篇博客里已经介绍.传送门: https://www.cnblogs.com/guanxinjing/p ...
- LoadRunner内部结构(1)
LoadRunner内部结构(1) 根据http://www.wilsonmar.com/1loadrun.htm 翻译: LoadRunner内部结构 1, 被测系统是由驱动 ...
- poj 3660 Cow Contest (bitset+floyd传递闭包)
传送门 解题思路 考试题,想到传递闭包了,写了个O(n^3)的,T了7个点...后来看题解是tm的bitset优化???以前好像没听过诶(我太菜了),其实也不难,时间复杂度O(n^3/32) #inc ...