用scikit-learn进行LDA降维
在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结。
1. 对scikit-learn中LDA类概述
在scikit-learn中, LDA类是sklearn.discriminant_analysis.LinearDiscriminantAnalysis。那既可以用于分类又可以用于降维。当然,应用场景最多的还是降维。和PCA类似,LDA降维基本也不用调参,只需要指定降维到的维数即可。
2. LinearDiscriminantAnalysis类概述
我们这里对LinearDiscriminantAnalysis类的参数做一个基本的总结。
1)solver : 即求LDA超平面特征矩阵使用的方法。可以选择的方法有奇异值分解"svd",最小二乘"lsqr"和特征分解"eigen"。一般来说特征数非常多的时候推荐使用svd,而特征数不多的时候推荐使用eigen。主要注意的是,如果使用svd,则不能指定正则化参数shrinkage进行正则化。默认值是svd
2)shrinkage:正则化参数,可以增强LDA分类的泛化能力。如果仅仅只是为了降维,则一般可以忽略这个参数。默认是None,即不进行正则化。可以选择"auto",让算法自己决定是否正则化。当然我们也可以选择不同的[0,1]之间的值进行交叉验证调参。注意shrinkage只在solver为最小二乘"lsqr"和特征分解"eigen"时有效。
3)priors :类别权重,可以在做分类模型时指定不同类别的权重,进而影响分类模型建立。降维时一般不需要关注这个参数。
4)n_components:即我们进行LDA降维时降到的维数。在降维时需要输入这个参数。注意只能为[1,类别数-1)范围之间的整数。如果我们不是用于降维,则这个值可以用默认的None。
从上面的描述可以看出,如果我们只是为了降维,则只需要输入n_components,注意这个值必须小于“类别数-1”。PCA没有这个限制。
3. LinearDiscriminantAnalysis降维实例
在LDA的原理篇我们讲到,PCA和LDA都可以用于降维。两者没有绝对的优劣之分,使用两者的原则实际取决于数据的分布。由于LDA可以利用类别信息,因此某些时候比完全无监督的PCA会更好。下面我们举一个LDA降维可能更优的例子。
完整代码参加我的github: https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/lda.ipynb
我们首先生成三类三维特征的数据,代码如下:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
from sklearn.datasets.samples_generator import make_classification
X, y = make_classification(n_samples=1000, n_features=3, n_redundant=0, n_classes=3, n_informative=2,
n_clusters_per_class=1,class_sep =0.5, random_state =10)
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
ax.scatter(X[:, 0], X[:, 1], X[:, 2],marker='o',c=y)
我们看看最初的三维数据的分布情况:

首先我们看看使用PCA降维到二维的情况,注意PCA无法使用类别信息来降维,代码如下:
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
print pca.explained_variance_ratio_
print pca.explained_variance_
X_new = pca.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker='o',c=y)
plt.show()
在输出中,PCA找到的两个主成分方差比和方差如下:
[ 0.43377069 0.3716351 ]
[ 1.20962365 1.03635081]
输出的降维效果图如下:

由于PCA没有利用类别信息,我们可以看到降维后,样本特征和类别的信息关联几乎完全丢失。
现在我们再看看使用LDA的效果,代码如下:
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis(n_components=2)
lda.fit(X,y)
X_new = lda.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker='o',c=y)
plt.show()
输出的效果图如下:

可以看出降维后样本特征和类别信息之间的关系得以保留。
一般来说,如果我们的数据是有类别标签的,那么优先选择LDA去尝试降维;当然也可以使用PCA做很小幅度的降维去消去噪声,然后再使用LDA降维。如果没有类别标签,那么肯定PCA是最先考虑的一个选择了。
(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)
用scikit-learn进行LDA降维的更多相关文章
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- sklearn LDA降维算法
sklearn LDA降维算法 LDA(Linear Discriminant Analysis)线性判断别分析,可以用于降维和分类.其基本思想是类内散度尽可能小,类间散度尽可能大,是一种经典的监督式 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- PCA和LDA降维的比较
PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维.下面的代码分别实现了两种降维方式: print(__doc__) import matplotlib.pyplot as ...
- 使用pca/lda降维
PCA主成分分析 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 用鸢尾花数据集 展示 降维的效果 f ...
- Linear Regression with Scikit Learn
Before you read This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...
随机推荐
- Angular2入门系列教程3-多个组件,主从关系
上一篇 Angular2项目初体验-编写自己的第一个组件 好了,前面简单介绍了Angular2的基本开发,并且写了一个非常简单的组件,这篇文章我们将要学会编写多个组件并且有主从关系 现在,假设我们要做 ...
- Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...
- iOS开发之多种Cell高度自适应实现方案的UI流畅度分析
本篇博客的主题是关于UI操作流畅度优化的一篇博客,我们以TableView中填充多个根据内容自适应高度的Cell来作为本篇博客的使用场景.当然Cell高度的自适应网上的解决方案是铺天盖地呢,今天我们的 ...
- Java进击C#——前言
本章简言 记得三年前笔者来到现在的公司的时候,公司人口不出十个人.那个时候笔者刚从日本回来,想在福州.厦门.青岛找一个合适自己发展的机会.最后我的一个福州的朋友打电话希望我能过去帮他,跟他一起创业.这 ...
- iOS UITableView 与 UITableViewController
很多应用都会在界面中使用某种列表控件:用户可以选中.删除或重新排列列表中的项目.这些控件其实都是UITableView 对象,可以用来显示一组对象,例如,用户地址薄中的一组人名.项目地址. UITab ...
- 【原】无脑操作:express + MySQL 实现CRUD
基于node.js的web开发框架express简单方便,很多项目中都在使用.这里结合MySQL数据库,实现最简单的CRUD操作. 开发环境: IDE:WebStorm DB:MySQL ------ ...
- mysql 赋予用户权限
# 赋予权限MySQL> grant 权限参数 on 数据库名称.表名称 to 用户名@用户地址 identified by '用户密码'; # 立即生效权限MySQL> flush pr ...
- #ifndef
关于c的#ifndef条件编译: 1)最好把头文件的内容都放在#ifndef和#endif中 2)一般格式: #ifndef <标识> #define <标识> ...... ...
- Windows Server 2008 R2常规安全设置及基本安全策略
这篇文章主要介绍了Windows Web Server 2008 R2服务器简单安全设置,需要的朋友可以参考下 用的腾讯云最早选购的时候悲催的只有Windows Server 2008 R2的系统,原 ...
- .NET跨平台之旅:数据库连接字符串写法引发的问题
最近在一个ASP.NET Core站点中遇到一个奇怪问题.当用dotnet run命令启动站点后,开始的一段时间请求执行速度超慢,有时要超过20秒,有时甚至超过1分钟,日志中会记录这样的错误: Sys ...