在线性判别分析LDA原理总结中,我们对LDA降维的原理做了总结,这里我们就对scikit-learn中LDA的降维使用做一个总结。

1. 对scikit-learn中LDA类概述

    在scikit-learn中, LDA类是sklearn.discriminant_analysis.LinearDiscriminantAnalysis。那既可以用于分类又可以用于降维。当然,应用场景最多的还是降维。和PCA类似,LDA降维基本也不用调参,只需要指定降维到的维数即可。

2. LinearDiscriminantAnalysis类概述

    我们这里对LinearDiscriminantAnalysis类的参数做一个基本的总结。

    1)solver : 即求LDA超平面特征矩阵使用的方法。可以选择的方法有奇异值分解"svd",最小二乘"lsqr"和特征分解"eigen"。一般来说特征数非常多的时候推荐使用svd,而特征数不多的时候推荐使用eigen。主要注意的是,如果使用svd,则不能指定正则化参数shrinkage进行正则化。默认值是svd

    2)shrinkage:正则化参数,可以增强LDA分类的泛化能力。如果仅仅只是为了降维,则一般可以忽略这个参数。默认是None,即不进行正则化。可以选择"auto",让算法自己决定是否正则化。当然我们也可以选择不同的[0,1]之间的值进行交叉验证调参。注意shrinkage只在solver为最小二乘"lsqr"和特征分解"eigen"时有效。

    3)priors :类别权重,可以在做分类模型时指定不同类别的权重,进而影响分类模型建立。降维时一般不需要关注这个参数。

    4)n_components:即我们进行LDA降维时降到的维数。在降维时需要输入这个参数。注意只能为[1,类别数-1)范围之间的整数。如果我们不是用于降维,则这个值可以用默认的None。

    从上面的描述可以看出,如果我们只是为了降维,则只需要输入n_components,注意这个值必须小于“类别数-1”。PCA没有这个限制。

3. LinearDiscriminantAnalysis降维实例

    在LDA的原理篇我们讲到,PCA和LDA都可以用于降维。两者没有绝对的优劣之分,使用两者的原则实际取决于数据的分布。由于LDA可以利用类别信息,因此某些时候比完全无监督的PCA会更好。下面我们举一个LDA降维可能更优的例子。

    完整代码参加我的github: https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/lda.ipynb

    我们首先生成三类三维特征的数据,代码如下:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
from sklearn.datasets.samples_generator import make_classification
X, y = make_classification(n_samples=1000, n_features=3, n_redundant=0, n_classes=3, n_informative=2,
n_clusters_per_class=1,class_sep =0.5, random_state =10)
fig = plt.figure()
ax = Axes3D(fig, rect=[0, 0, 1, 1], elev=30, azim=20)
ax.scatter(X[:, 0], X[:, 1], X[:, 2],marker='o',c=y)

    我们看看最初的三维数据的分布情况:

    首先我们看看使用PCA降维到二维的情况,注意PCA无法使用类别信息来降维,代码如下:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X)
print pca.explained_variance_ratio_
print pca.explained_variance_
X_new = pca.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker='o',c=y)
plt.show()

    在输出中,PCA找到的两个主成分方差比和方差如下:

[ 0.43377069  0.3716351 ]
[ 1.20962365 1.03635081]

    输出的降维效果图如下:

    由于PCA没有利用类别信息,我们可以看到降维后,样本特征和类别的信息关联几乎完全丢失。

    现在我们再看看使用LDA的效果,代码如下:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis(n_components=2)
lda.fit(X,y)
X_new = lda.transform(X)
plt.scatter(X_new[:, 0], X_new[:, 1],marker='o',c=y)
plt.show()

    输出的效果图如下:

    可以看出降维后样本特征和类别信息之间的关系得以保留。

    一般来说,如果我们的数据是有类别标签的,那么优先选择LDA去尝试降维;当然也可以使用PCA做很小幅度的降维去消去噪声,然后再使用LDA降维。如果没有类别标签,那么肯定PCA是最先考虑的一个选择了。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

用scikit-learn进行LDA降维的更多相关文章

  1. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. sklearn LDA降维算法

    sklearn LDA降维算法 LDA(Linear Discriminant Analysis)线性判断别分析,可以用于降维和分类.其基本思想是类内散度尽可能小,类间散度尽可能大,是一种经典的监督式 ...

  6. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  7. PCA和LDA降维的比较

    PCA 主成分分析方法,LDA 线性判别分析方法,可以认为是有监督的数据降维.下面的代码分别实现了两种降维方式: print(__doc__) import matplotlib.pyplot as ...

  8. 使用pca/lda降维

    PCA主成分分析 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 用鸢尾花数据集 展示 降维的效果 f ...

  9. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

随机推荐

  1. Windows2012R2备用域控搭建

    Windows2012R2备用域控搭建 前置操作 域控主域控的主dns:自己的ip,备dns:备域控的ip备域控的主dns:自己的ip,备dns:主域控的ip 客户端主dns:主域控的ip,备dns: ...

  2. 在 C# 里使用 F# 的 option 变量

    在使用 C# 与 F# 混合编程的时候(通常是使用 C# 实现 GUI,F#负责数据处理),经常会遇到要判断一个 option 是 None 还是 Some.虽然 Option module 里有 i ...

  3. 一个表缺失索引发的CPU资源瓶颈案例

    背景 近几日,公司的应用团队反应业务系统突然变慢了,之前是一直比较正常.后与业务部门沟通了解详情,得知最近生意比较好,同时也在做大的促销活动,使得业务数据处理的量出现较大的增长,最终系统在处理时出现瓶 ...

  4. 高效而稳定的企业级.NET Office 组件Spire(.NET组件介绍之二)

    在项目开发中,尤其是企业的业务系统中,对文档的操作是非常多的,有时几乎给人一种错觉的是”这个系统似乎就是专门操作文档的“.毕竟现在的很多办公中大都是在PC端操作文档等软件,在这些庞大而繁重的业务中,单 ...

  5. NDK开发_笔记0

    自谷歌搜索退出中国以来,谷歌对全球第二大市场中国的态度一直保持冷淡.可是北京时间12月8日,谷歌2016开发者大会在北京召开,同时专门针对中国的谷歌开发者网站已经上线:https://develope ...

  6. DB2重启数据库实例

    DB2重启数据库实例时,有时停止实例会失败,此时需要先确认没有应用链接数据库,然后再关闭数据库实例,并重新启动. 1.查看是否有活动的链接 命令:db2 list applications for d ...

  7. Linux实战教学笔记02:计算机系统硬件核心知识

    标签(空格分隔):Linux实战教学笔记-陈思齐 第1章 互联网企业常见服务器介绍 1.1 互联网公司服务器品牌 - DELL(大多数公司,常用) - HP - IBM(百度在用) 浪潮 联想 航天联 ...

  8. 我的MYSQL学习心得(九) 索引

    我的MYSQL学习心得(九) 索引 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据类 ...

  9. Mono 3.2.3 Socket功能迎来一稳定的版本

    由于兴趣自己业余时间一直在搞.net下面的通讯应用,mono的存在得以让.NET程序轻松运行在Linux之下.不过经过多尝试Socket相关功能在Mono下的表现并不理想.不管性能还是吞吐能力方面离我 ...

  10. 透过浏览器看HTTP缓存

    作为前端开发人员,对于我们的站点或应用的缓存机制我们能做的似乎不多,但这些却是与我们关注的性能息息相关的部分,站点没有做任何缓存机制,我们的页面可能会因为资源的下载和渲染变得很慢,但大家都知道去找前端 ...