最朴素的做法o(V*V/2+2E)~O(V^2)
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<string>
#include<string.h>
const int MAX = 2002;
int n;
int graph[MAX][MAX];
int dis[MAX];
bool vis[MAX];
const int INF = 0X7FFFFFFF;
int dijkstra()
{
memset(vis, false, sizeof(vis));
vis[1] = true;
for (int i = 1; i <= n; i++)
dis[i] =INF;
dis[1] = 0;
for (int i = 1; i <= n; i++)
{
if (graph[i][1] != 0)
dis[i] = graph[i][1];
}

for (int i = 0; i < n-1; i++)
{
int minn = INF, position = 1;
for (int i = 1; i <= n; i++)
{
if (!vis[i] && minn>dis[i])
{
minn = dis[i];
position = i;
}
}
vis[position] = true;
for (int i = 1; i <= n; i++)
{
if (!vis[i] &&graph[i][position]!=0&&dis[i] > (dis[position] + graph[i][position]))
dis[i] = dis[position] + graph[i][position];
}
}

return dis[n];
}

int main()
{

int t;
cin >> t>> n;
memset(graph, 0, sizeof(graph));
for (int i = 0; i < t; i++)
{
int x1, y1, val;
cin >> x1 >> y1 >> val;
if (graph[x1][y1])
{
if (graph[x1][y1]>val)
graph[x1][y1] = graph[y1][x1] = val;
}
else
{
graph[x1][y1] = graph[y1][x1] = val;
}

}
cout << dijkstra() << endl;
return 0;
}

/*

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

*/

最短路的优先队列做法,时间复杂度O(2E+VlogV)~o(vlgv)

#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<string>
#include<string.h>
#include<queue>
#include<algorithm>
struct node
{
int x, d;
node(int _x, int _d) :x(_x), d(_d){}
bool operator< (const node &b) const{
return d > b.d;
}
};
const int MAX = 2002;
int n;
int graph[MAX][MAX];
vector<vector<int>> edges(MAX);
int dis[MAX];
bool vis[MAX];
const int INF = 0X7FFFFFFF;

int dijkstra()
{
memset(vis, false, sizeof(vis));
priority_queue<node> que;

for (int i = 1; i <= n; i++)
dis[i] =INF;
dis[1] = 0;

que.push(node(1, 0));

while (!que.empty())
{
node tmp = que.top();
que.pop();
if (vis[tmp.x]) continue;
vis[tmp.x] = true;
for (int i = 0; i < edges[tmp.x].size(); i++)
{
if (!vis[edges[tmp.x][i]] && graph[edges[tmp.x][i]][tmp.x]!=0 && dis[edges[tmp.x][i]]>(dis[tmp.x] + graph[edges[tmp.x][i]][tmp.x]))
{
dis[edges[tmp.x][i]] = graph[edges[tmp.x][i]][tmp.x] + dis[tmp.x];
que.push(node(edges[tmp.x][i], dis[edges[tmp.x][i]]));
}
}

}

return dis[n];
}

int main()
{

int t;
cin >> t>> n;
memset(graph, 0, sizeof(graph));
edges.resize(MAX);

for (int i = 0; i < t; i++)
{
int x1, y1, val;
cin >> x1 >> y1 >> val;
if (graph[x1][y1])
{
if (graph[x1][y1]>val)
{
graph[x1][y1] = graph[y1][x1] = val;
}
}
else
{
graph[x1][y1] = graph[y1][x1] = val;
edges[x1].push_back(y1);
edges[y1].push_back(x1);
}

}
cout << dijkstra() << endl;
return 0;
}

/*

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

*/

dijkstra 最短路算法的更多相关文章

  1. Dijkstra最短路算法

    Dijkstra最短路算法 --转自啊哈磊[坐在马桶上看算法]算法7:Dijkstra最短路算法 上节我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最 ...

  2. 【坐在马桶上看算法】算法7:Dijkstra最短路算法

           上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径 ...

  3. Dijkstra 最短路算法(只能计算出一条最短路径,所有路径用dfs)

    上周我们介绍了神奇的只有五行的 Floyd 最短路算法,它可以方便的求得任意两点的最短路径,这称为"多源最短路".本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做&q ...

  4. 【啊哈!算法】算法7:Dijkstra最短路算法

    上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图 ...

  5. 对于dijkstra最短路算法的复习

    好久没有看图论了,就从最短路算法开始了. dijkstra算法的本质是贪心.只适用于不含负权的图中.因为出现负权的话,贪心会出错. 一般来说,我们用堆(优先队列)来优化,将它O(n2)的复杂度优化为O ...

  6. 如何在 Java 中实现 Dijkstra 最短路算法

    定义 最短路问题的定义为:设 \(G=(V,E)\) 为连通图,图中各边 \((v_i,v_j)\) 有权 \(l_{ij}\) (\(l_{ij}=\infty\) 表示 \(v_i,v_j\) 间 ...

  7. python dijkstra 最短路算法示意代码

    def dijkstra(graph, from_node, to_node): q, seen = [(0, from_node, [])], set() while q: cost, node, ...

  8. dijkstra最短路算法(堆优化)

    这个算法不能处理负边情况,有负边,请转到Floyd算法或SPFA算法(SPFA不能处理负环,但能判断负环) SPFA(SLF优化):https://www.cnblogs.com/yifan0305/ ...

  9. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

随机推荐

  1. docker-image container 基本操作 -常用命令

    基本概念: container 容器.可以把每个 container 看做是一个独立的主机. container 的创建通常有一个 image 作为其模板.类比成虚拟机的话可以理解为 image 就是 ...

  2. Vijos1046观光旅游[floyd 最小环]

    背景 湖南师大附中成为百年名校之后,每年要接待大批的游客前来参观.学校认为大力发展旅游业,可以带来一笔可观的收入. 描述 学校里面有N个景点.两个景点之间可能直接有道路相连,用Dist[I,J]表示它 ...

  3. AC日记——过滤多余的空格 1.7 23

    23:过滤多余的空格 总时间限制:  1000ms 内存限制:   65536kB 描述 一个句子中也许有多个连续空格,过滤掉多余的空格,只留下一个空格. 输入 一行,一个字符串(长度不超过200), ...

  4. Java中的ReentrantLock和synchronized两种锁定机制的对比

    问题:多个访问线程将需要写入到文件中的数据先保存到一个队列里面,然后由专门的 写出线程负责从队列中取出数据并写入到文件中. http://blog.csdn.net/top_code/article/ ...

  5. BigDecimal.ROUND_HALF_XXX的各种用法

    在银行.帐户.计费等领域,BigDecimal提供了精确的数值计算.其中8种舍入方式值得掌握. 1.ROUND_UP 舍入远离零的舍入模式. 在丢弃非零部分之前始终增加数字(始终对非零舍弃部分前面的数 ...

  6. Eclipse代码追踪功能说明

    在使用Java编写复杂一些的程序时,你会不会常常对一层层的继承关系和一次次方法的调用感到迷惘呢?幸亏我们有了Eclipse这么好的IDE可以帮我们理清头绪--这就要使用Eclipse强大的代码追踪功能 ...

  7. android ndk 无法找到 so 案例一例

    代码如下: public class JNIWrapWorkerThread{    static {        System.loadLibrary("libjni_base_fram ...

  8. NOIP1999 旅行家的预算

    题目描述 一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的).给定两个城市之间的距离D1.汽车油箱的容量C(以升为单位).每升汽油能行驶的距离D2.出发点每升汽油价格P和沿 ...

  9. css3结构性伪类选择器

  10. HTML 学习笔记 CSS(选择器4)

    CSS 后代选择器 后代选择器(descendant selector)又称为包含选择器.后代选择器可以选择作为某元素后代的元素. 根据上下文选择元素 我们可以定义后代选择器来创建一些规则,使这些规则 ...