[APIO2014]序列分割 --- 斜率优化DP
[APIO2014]序列分割
题目大意:
你正在玩一个关于长度为\(n\)的非负整数序列的游戏。这个游戏中你需要把序列分成\(k+1\)个非空的块。为了得到\(k+1\)块,你需要重复下面的操作\(k\)次:
选择一个有超过一个元素的块(初始时你只有一块,即整个序列)
选择两个相邻元素把这个块从中间分开,得到两个非空的块。
每次操作后你将获得那两个新产生的块的元素和的乘积的分数。你想要最大化最后的总得分。
\(n<=10^{5},k<=200\)
首先划分完\(k\)块后,发现非常像线性DP模型
自然地想,是不是分数跟划的顺序无关?
可以证明是的(归纳法)
那么,设
\(dp(i,j)\)表示枚举到了\(i\),第\(1...i\)切了几刀的最大收益。
有\(dp(i,j)=max(dp(k,j-1)+sum[k]*(sum[i]-sum[k]))(1<=k<=i-1)\)
那么展开式子,化为斜率优化的式子:
\(-dp(k,j-1)=sum[k]*sum[i]-sum[k]^{2}-dp(i,j)\)
其中\(k\)为\(sum[k]\),单调递增
其中\(x\)为\(sum[i]\),单调递增
要使\(dp(i,j)\)最大,因此维护下凸包,那么可以使用单调队列
空间滚一下就好
空间复杂度:\(O(n)\)(忽略记录决策点)
时间复杂度:\(O(nk)\)
注:被宏定义坑了很久。。。
#include<cstdio>
#include<cstring>
#define sid 100050
#define dd double
#define ll long long
#define ri register int
using namespace std; #define getchar() *S ++
char RR[], *S = RR;
inline int read(){
int p = , w = ;
char c = getchar();
while(c > '' || c < '') {
if(c == '-') w = -;
c = getchar();
}
while(c >= '' && c <= '') {
p = p * + c - '';
c = getchar();
}
return p * w;
} ll sum[sid], dp[][sid];
int lst[][sid], q[sid], n, k;
bool now = , pre = ; #define x(g) sum[(g)]
#define y(g) (sum[(g)]*sum[(g)]-dp[pre][(g)])
inline dd s(int i, int j) {
if(x(i) == x(j)) return -1e18;
return (dd)(y(i) - y(j)) / (dd)(x(i) - x(j));
} int main() {
fread(RR, , sizeof(RR), stdin);
n = read(); k = read();
for(ri i = ; i <= n; i ++) sum[i] = sum[i - ] + read();
for(ri j = ; j <= k; j ++) {
int fr = , to = ; now ^= ; pre ^= ;
for(ri i = ; i <= n; i ++) {
while(fr + <= to && s(q[fr], q[fr + ]) <= sum[i]) fr ++;
dp[now][i] = dp[pre][q[fr]] + sum[q[fr]] * (sum[i] - sum[q[fr]]);
lst[j][i]=q[fr];
while(fr + <= to && s(q[to - ], q[to]) >= s(q[to], i)) to --;
q[++ to] = i;
}
}
printf("%lld\n",dp[now][n]);
int e = n;
for(ri i = k; i >= ; i --) {
e = lst[i][e]; printf("%d ", e);
}
return ;
}
序列分割
[APIO2014]序列分割 --- 斜率优化DP的更多相关文章
- bzoj3675[Apio2014]序列分割 斜率优化dp
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 3508 Solved: 1402[Submit][Stat ...
- 【bzoj3675】[Apio2014]序列分割 斜率优化dp
原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...
- BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)
洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...
- BZOJ 3675 APIO2014 序列切割 斜率优化DP
题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...
- P3648 [APIO2014]序列分割 斜率优化
题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...
- 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]
序列分割 Time Limit: 40 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...
- BZOJ3675: [Apio2014]序列分割(斜率优化)
Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4186 Solved: 1629[Submit][Status][Discuss] Descript ...
- BZOJ 3675: 序列分割 (斜率优化dp)
Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...
- BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )
WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...
随机推荐
- python学习笔记(十一)之序列
之前学习的列表,元组,字符串都是序列类型,有很多共同特点: 通过索引得到每一个元素,索引从0开始 通过分片的方法得到一个范围的元素的集合 很多通用的操作符(重复操作符,拼接操作符,成员关系操作符) 序 ...
- 小程序Openid 获取,服务器 encryptedData 解密 遇到的坑
获取客户 openId 和 unionId 需要以下步骤(都为必须步骤) 1.从验证从客户端传上来code, 获取sessionKey (需要配合小程序appid ,secret 发送到微信服务器) ...
- frameset测试
frame不能放在body标签内.指定name属性,为这一个框架指定名字,在html的a的target属性可以设为target="right"在该框架显示跳转的页面.(常用于后台管 ...
- webconfig的配置解析
<?xml version="1.0"?> <!--注意: 除了手动编辑此文件以外,您还可以使用 Web 管理工具来配置应用程序的设置.可以使用 Visual S ...
- [Leetcode] Longest Palindromic Subsequence
Longest Palindromic Subsequence 题解 题目来源:https://leetcode.com/problems/longest-palindromic-subsequenc ...
- 利用pycharm运行scrapy以及scrapy的配置
1.安装两个whl文件 https://pypi.python.org/pypi/Twisted 下载Twisted的whl文件 https://pypi.python.org/pypi/Scrapy ...
- Centos更新配置文件命令
source 命令是 bash shell 的内置命令,从 C Shell 而来.source 命令的另一种写法是点符号,用法和 source 相同,从Bourne Shell而来.source 命令 ...
- windows 10添加定时任务
1.在搜索栏搜索‘任务计划’ 2.选择任务计划程序,打开 3.创建基本任务 4.输入任务名称 5.选择任务触发周期 6.选择任务触发的具体时间点 7.选择任务需要做的事 8.选择启动程序后,选择具体的 ...
- Windows上安装Jekyll
Jekyll是什么 jekyll是一个简单的免费的Blog生成工具,是一个静态站点生成器, 它会根据网页源码生成静态文件.它提供了模板.变量.插件等功能,所以实际上可以用来编写整个网站.也可使用基于j ...
- linux下查看资源使用情况
//查看占用内存最多的前K的程序ps aux | sort -k4nr | head -K //查看占用CPU最多的前K的程序 ps aux | sort -k3nr | head -K