转载请注明出处:

https://www.cnblogs.com/darkknightzh/p/9410540.html

论文:

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

网址:

https://arxiv.org/abs/1704.04861?context=cs

非官方的pytorch代码:

https://github.com/marvis/pytorch-mobilenet

1. 深度可分离卷积

mobilenetV1使用的是深度可分离卷积(Depthwise Separable Convolution,DSC),DSC包含两部分:depthwise convolution(DWC)+ pointwise convolution(PWC)。DWC对输入的通道进行滤波,其不增加通道的数量,PWC用于将PWC不同的通道进行连接,其可以增加通道的数量。通过这种分解的方式,可以明显的减少计算量。

如下图所示,传统的卷积(a),卷积核参数为${{D}_{K}}\centerdot {{D}_{K}}\centerdot M\centerdot N$,其中${{D}_{K}}$为卷积核大小,M为输入的通道数,N为输出的通道数。DWC(b)中卷积核参数为${{D}_{K}}\centerdot {{D}_{K}}\centerdot 1\centerdot M$,其中M个${{D}_{K}}\centerdot {{D}_{K}}$的核和输入特征的对应通道进行卷积,如下式所示。PWC(c)中卷积核参数为$1\centerdot 1\centerdot M\centerdot N$,每个卷积核在特征维度上分别对输入的M个特征进行加权,最终得到N个特征(M≠N时,完成了升维或者降维)。

${{\mathbf{\hat{G}}}_{k,l,m}}=\sum\limits_{i,j}{{{{\mathbf{\hat{K}}}}_{k,l,m}}\centerdot {{\mathbf{F}}_{k+i-1,l+j-1,m}}}$

传统卷积的计算量为:

${{D}_{K}}\centerdot {{D}_{K}}\centerdot M\centerdot N\centerdot {{D}_{F}}\centerdot {{D}_{F}}$

DSC总共的计算量为:

${{D}_{K}}\centerdot {{D}_{K}}\centerdot M\centerdot {{D}_{F}}\centerdot {{D}_{F}}+M\centerdot N\centerdot {{D}_{F}}\centerdot {{D}_{F}}$

当使用3*3的卷积核时,DSC可将计算量降低为原来的1/8到1/9。

需要说明的是,DWC,PWC后面均有BN和ReLU。如下图所示,传统的卷积层为3*3conv+BN+ReLU,Depthwise Separable convolutions为3*3DWC+BN+ReLU+1*1conv+BN+ReLU。

2. 网络结构

mobileNetV1的网络结构如下图所示。其中第一个卷积层为传统的卷积;前面的卷积层均有bn和relu,最后一个全连接层只有BN,无ReLU。

mobileNetV1使用RMSprop训练;由于参数很少,DWC使用比较小的或者不使用weight decay(l2 regularization)。

3. 宽度缩放因子(width multiplier)

文中引入了$\alpha $作为宽度缩放因子,其作用是在整体上对网络的每一层维度(特征数量)进行瘦身。$\alpha $影响模型的参数数量及前向计算时的乘加次数。此时网络每一层的输入为$\alpha M$维,输出为$\alpha N$维。此时DSC的计算量变为:

${{D}_{K}}\centerdot {{D}_{K}}\centerdot \alpha M\centerdot {{D}_{F}}\centerdot {{D}_{F}}+\alpha M\centerdot \alpha N\centerdot {{D}_{F}}\centerdot {{D}_{F}}$

$\alpha \in (0,1]$,典型值为1,0.75,0.5,0.25。

4. 分辨率缩放因子(resolution multiplier)

该因子即为$\rho $,用于降低输入图像的分辨率(如将224*224降低到192*192,160*160,128*128)。

此时DSC的计算量变为:

${{D}_{K}}\centerdot {{D}_{K}}\centerdot \alpha M\centerdot \rho {{D}_{F}}\centerdot \rho {{D}_{F}}+\alpha M\centerdot \alpha N\centerdot \rho {{D}_{F}}\centerdot \rho {{D}_{F}}$

5. pytorch代码

pytorch代码见参考网址中benchmark.py

 class MobileNet(nn.Module):
def __init__(self):
super(MobileNet, self).__init__() def conv_bn(inp, oup, stride): # 第一层传统的卷积:conv3*3+BN+ReLU
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True)
) def conv_dw(inp, oup, stride): # 其它层的depthwise convolution:conv3*3+BN+ReLU+conv1*1+BN+ReLU
return nn.Sequential(
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.ReLU(inplace=True), nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU(inplace=True),
) self.model = nn.Sequential(
conv_bn( 3, 32, 2), # 第一层传统的卷积
conv_dw( 32, 64, 1), # 其它层depthwise convolution
conv_dw( 64, 128, 2),
conv_dw(128, 128, 1),
conv_dw(128, 256, 2),
conv_dw(256, 256, 1),
conv_dw(256, 512, 2),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 512, 1),
conv_dw(512, 1024, 2),
conv_dw(1024, 1024, 1),
nn.AvgPool2d(7),
)
self.fc = nn.Linear(1024, 1000) # 全连接层 def forward(self, x):
x = self.model(x)
x = x.view(-1, 1024)
x = self.fc(x)
return x

(原)MobileNetV1的更多相关文章

  1. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  2. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  3. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  4. 多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类)

    前言:刚学习了一段机器学习,最近需要重构一个java项目,又赶过来看java.大多是线程代码,没办法,那时候总觉得多线程是个很难的部分很少用到,所以一直没下决定去啃,那些年留下的坑,总是得自己跳进去填 ...

  5. 【原】FMDB源码阅读(二)

    [原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...

  6. 【原】FMDB源码阅读(一)

    [原]FMDB源码阅读(一) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 说实话,之前的SDWebImage和AFNetworking这两个组件我还是使用过的,但是对于 ...

  7. 【原】AFNetworking源码阅读(六)

    [原]AFNetworking源码阅读(六) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这一篇的想讲的,一个就是分析一下AFSecurityPolicy文件,看看AF ...

  8. 【原】AFNetworking源码阅读(五)

    [原]AFNetworking源码阅读(五) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇中提及到了Multipart Request的构建方法- [AFHTTP ...

  9. 【原】AFNetworking源码阅读(四)

    [原]AFNetworking源码阅读(四) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 上一篇还遗留了很多问题,包括AFURLSessionManagerTaskDe ...

随机推荐

  1. For each loop in Native C++

    今天发现 for each 语法居然可以直接编译通过,之前还以为只有开了/clr才可以支持.查了一下资料发现ms从vs2005就已经支持了.虽然不符合标准不过用着确实方便啊,必须记录一下. 具体看这里 ...

  2. Windows系统下oracle数据库每天定时备份

    第一步:建立备份脚本oraclebackup.bat 首先建立一个备份bat文件,在D盘下新建备份目录oraclebackup,将oracle安装目录下的EXP.EXE复制到此目录下,再新建一个文本文 ...

  3. django url解析中的ResolverMatch

    了解这个问题,源于昨天开发时遇到的一个小小的问题. 问题描述如下: 比如,我有一个url,定义如下: path('res_edit/<app>/<env>/', AppResE ...

  4. ElasticSearch - match vs term

    match vs term 这个问题来自stackoverflow https://stackoverflow.com/questions/23150670/elasticsearch-match-v ...

  5. Python list 函数

    list 修改列表元素: 下标直接修改  list[下标]=值 列表添加元素: list.append(值)末尾追加 列表插入元素: list.insert(下标,元素) 列表删除元素: del li ...

  6. free -m图解

  7. Codeforces Round #428 (Div. 2)

    终于上蓝名了,hahahahaha,虽然这场的 B 题因为脑抽了,少考虑一种情况终判错了,还是很可惜的.. B题本来过来1500个人,终判之后只剩下了200多个,真的有毒!!!! A - Arya a ...

  8. js上传图片回显

    $("#file01").change(function(){ var objUrl = getObjectURL(this.files[0]) ; console.log(&qu ...

  9. 010 处理模型数据(ModelAndView,Map Model,@SessionAttributes)

    1.处理数据模型 SpringMVC提供了几种途径出书模型数据 二:ModelAndView 1.介绍 2.index <%@ page language="java" co ...

  10. Python6 - 函数总结

    一.函数的基本知识 定义: 函数是指将一组语句的集合通过一个名字(函数名)封装起来,要想执行这个函数,只需调用其函数名即可 特性: 减少重复代码 使程序变的可扩展 使程序变得易维护 1.1函数定义规则 ...