UVALive 5099 Nubulsa Expo 全局最小割问题
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description

You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa is an undeveloped country and it is threatened by the rising of sea level. Scientists predict that Nubulsa will disappear by the year of 2012. Nubulsa government wants to host the 2011 Expo in their country so that even in the future, all the people in the world will remember that there was a country named ``Nubulsa".
As you know, the Expo garden is made up of many museums of different countries. In the Expo garden, there are a lot of bi-directional roads connecting those museums, and all museums are directly or indirectly connected with others. Each road has a tourist capacity which means the maximum number of people who can pass the road per second.
Because Nubulsa is not a rich country and the ticket checking machine is very expensive, the government decides that there must be only one entrance and one exit. The president has already chosen a museum as the entrance of the whole Expo garden, and it's the Expo chief directory Wuzula's job to choose a museum as the exit.
Wuzula has been to the Shanghai Expo, and he was frightened by the tremendous ``people mountain people sea" there. He wants to control the number of people in his Expo garden. So Wuzula wants to find a suitable museum as the exit so that the ``max tourists flow" of the Expo garden is the minimum. If the ``max tourist flow" is W, it means that when the Expo garden comes to ``stable status", the number of tourists who enter the entrance per second is at most W. When the Expo garden is in ``stable status", it means that the number of people in the Expo garden remains unchanged.
Because there are only some posters in every museum, so Wuzula assume that all tourists just keep walking and even when they come to a museum, they just walk through, never stay.
Input
There are several test cases, and the input ends with a line of ``0 0 0".
For each test case:
The first line contains three integers N, M and S, representing the number of the museums, the number of roads and the No. of the museum which is chosen as the entrance (all museums are numbered from 1 to N). For example, 5 5 1 means that there are 5 museums and 5 roads connecting them, and the No. 1 museum is the entrance.
The next M lines describe the roads. Each line contains three integers X, Y and K, representing the road connects museum X with museum Y directly and its tourist capacity is K.
Please note:
1 < N300,
0 < M50000,
0 < S, X, YN,
0 < K1000000
Output
For each test case, print a line with only an integer W, representing the ``max tourist flow" of the Expo garden if Wuzula makes the right choice.
Sample Input
5 5 1
1 2 5
2 4 6
1 3 7
3 4 3
5 1 10
0 0 0
Sample Output
8
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 555
#define inf 1<<30 int v[MAXN],dist[MAXN];
int map[MAXN][MAXN];
bool vis[MAXN];
int n,m; //求全局最小割的Stoer_Wanger算法
int Stoer_Wanger(int n)
{
int res=inf;
for(int i=;i<n;i++)v[i]=i;
while(n>){
int k=,pre=;//pre用来表示之前加入A集合的点,我们每次都以0点为第一个加入A集合的点
memset(vis,false,sizeof(vis));
memset(dist,,sizeof(dist));
for(int i=;i<n;i++){
k=-;
for(int j=;j<n;j++){
if(!vis[v[j]]){
dist[v[j]]+=map[v[pre]][v[j]];//dis数组用来表示该点与A集合中所有点之间的边的长度之和
if(k==-||dist[v[k]]<dist[v[j]]){
k=j;
}
}
}
vis[v[k]]=true;
if(i==n-){
res=min(res,dist[v[k]]);
//将该点合并到pre上,相应的边权就要合并
for(int j=;j<n;j++){
map[v[pre]][v[j]]+=map[v[j]][v[k]];
map[v[j]][v[pre]]+=map[v[j]][v[k]];
}
v[k]=v[--n];//删除最后一个点
}
pre=k;
}
}
return res;
} int main()
{
int u,v,w,ss;
while(~scanf("%d%d",&n,&m)){ memset(map,,sizeof(map));
while(m--){
scanf("%d%d%d",&u,&v,&w);
u--,v--;
map[u][v]+=w;
map[v][u]+=w;
}
int ans=Stoer_Wanger(n);
printf("%d\n",ans);
}
return ;
}
UVALive 5099 Nubulsa Expo 全局最小割问题的更多相关文章
- UVALive 5099 Nubulsa Expo 全球最小割 非网络流量 n^3
主题链接:点击打开链接 意甲冠军: 给定n个点m条无向边 源点S 以下m行给出无向边以及边的容量. 问: 找一个汇点,使得图的最大流最小. 输出最小的流量. 思路: 最大流=最小割. 所以题意就是找全 ...
- HDU 3691 Nubulsa Expo(全局最小割)
Problem DescriptionYou may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa i ...
- UVALive 5099 Nubulsa Expo(全局最小割)
题面 vjudge传送门 题解 论文题 见2016绍兴一中王文涛国家队候选队员论文<浅谈无向图最小割问题的一些算法及应用>4节 全局最小割 板题 CODE 暴力O(n3)O(n^3)O(n ...
- HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)
Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...
- 全局最小割StoerWagner算法详解
前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...
- ZOJ 2753 Min Cut (Destroy Trade Net)(无向图全局最小割)
题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做 ...
- 全局最小割Stoer-Wagner算法
借鉴:http://blog.kongfy.com/2015/02/kargermincut/ 提到无向图的最小割问题,首先想到的就是Ford-Fulkerson算法解s-t最小割,通过Edmonds ...
- HDU 6081 度度熊的王国战略(全局最小割堆优化)
Problem Description度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族.哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士.所以这一场战争,将会十分艰难.为了更好的进攻 ...
- HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)
Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...
随机推荐
- Sql Server 表的复制
声名:A,B ,都是表 --B表存在(两表结构一样)insert into B select * from A 若两表只是有部分(字段)相同,则 insert into B(col1,col2,col ...
- PHP:is_string()字符串函数
is_string() is_string() - 检测变量是否是字符串. 描述:bool is_string( mixed $var ) 如果var是sring则返回TRUE,否则返回FALSE.m ...
- css img 等比例自动缩放
按父容器宽度自动缩放,并且保持图片原本的长宽比 img{ width: auto; height: auto; max-width: 100%; max-height: 100%; }
- CUDA直方图实例=CPU+GPU(global)+GPU(shared)
项目打包下载链接 顺便批判下CSDN上传坑爹现象,好多次都是到了95%或者99%就不动了.我……
- 自建ssr(谷歌云免费试用一年)
近期我一个朋友的VPN到期了,他也不想再去续费,同时发现谷歌云第一年申请时是免费的,所以他就自己搭建了一个自己专属的VPN 以下是他的搭建教程: 本教程难点在于申请免费试用资格 谷歌云+ssr搭建免 ...
- 从多个textarea中随机选取一个内容
<div id="IMContentTest"> <textarea name="IMContent" class="IMClass ...
- 【Django】Django中的模糊查询以及Q对象的简单使用
Django中的模糊查询: 需要做一个查找的功能,所以需要使用到模糊查询. 使用方法是:字段名加上双下划线跟上contains或者icontains,icontains和contains表示是否区分大 ...
- CentOS---JDK安装与配置
1.先查看一下CentOS中存在的jdk安装包信息 # rpm -qa | grep java 查看CentOS安装的jdk版本 #java -version 2.分别执行以下命令将所有相关包都删除 ...
- Python_常用模块
一.内置模块 定义:其实模块简单说就是一堆代码实现某个功能,它们是已经写好的.py文件.只需要用import应用即可. 分类: 1. 自定义模块,就是自己写的.py文件为了实现某个功能. 2. 内置标 ...
- java中常用的swing组件 (2013-10-27-163 写的日志迁移
五种布局: 流式布局(FlowLayout)边界布局(borderLayout)网格布局(GridLayout) 盒子布局(BoxLaYout) 空布局(null) 常用的几种 卡片布局(C ...