TOJ 2710: 过河 路径压缩
2710: 过河 
Total Submit: 32 Accepted:7
Description
在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。
题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
对于30%的数据,L <= 10000;
对于全部的数据,L <= 10^9。
Input
输入的第一行有一个正整数L(1 <= L <= 10^9),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1 <= S <= T <= 10,1 <= M <= 100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。
Output
输出只包括一个整数,表示青蛙过河最少需要踩到的石子数。
Sample Input
10
2 3 5
2 3 5 6 7
Sample Output
2
Source
这个普及组的题L是1e5的,直接dp最后遍历就行
那个我写好之后拿过来就是RE,因为这个数据是很大的,但是1 <= S <= T <= 10,1 <= M <= 100,利用这个s,t进行路径压缩,选用1到10的lcm(2520)就可以了,M最大又是100,所以数组开25205也够了
#include<stdio.h>
#include<algorithm>
using namespace std;
const int N=;
int a[],d[],vis[N],dp[N];
int main()
{
int l,s,t,m,x;
scanf("%d%d%d%d",&l,&s,&t,&m);
for(int i=; i<=m; i++)
scanf("%d",a+i);
sort(a+,a++m);
for(int i=; i<=m; i++)
d[i]=(a[i]-a[i-])%;
for(int i=; i<=m; i++)
a[i]=a[i-]+d[i],vis[a[i]]=;
l=a[m];
for(int i=; i<=l+t; i++)dp[i]=m;
for(int i=; i<=l+t; i++)
for (int j=s; j<=t; j++)
{
if (i-j>=)
dp[i]=min(dp[i],dp[i-j]);
dp[i]+=vis[i];
}
int ans=m;
for(int i=l; i<l+t; i++)ans=min(ans,dp[i]);
printf("%d\n",ans);
return ;
}
TOJ 2710: 过河 路径压缩的更多相关文章
- 洛谷p1052过河 路径压缩+dp
洛谷 P1052 过河 思路部分可以看这篇博客 我将在这里对其进行一些解释与补充 首先我们先看题 乍一看 这不是模板题吗 然后开开心心的敲了一个简单dp上去 #include<iostream& ...
- P1052 过河 线性dp 路径压缩
题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数 ...
- 【洛谷】P1052 过河【DP+路径压缩】
P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...
- poj1703Find them, Catch them(并查集以及路径压缩)
/* 题目大意:有两个不同的黑帮,开始的时候不清楚每个人是属于哪个的! 执行两个操作 A a, b回答a, b两个人是否在同一帮派,或者不确定 D a, b表示a, b两个人不在同一个帮派 思路:利用 ...
- [HDOJ2818]Building Block(带权并查集,路径压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2818 题意:有N个块,每次有两个操作: M x y表示把x所在的那一堆全部移到y所在的那一堆的下方. ...
- [HDOJ3635]Dragon Balls(并查集,路径压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3635 题意:有n个龙珠,n个城市.初始状态第i个龙珠在第i个城市里.接下来有两个操作: T A B:把 ...
- HDOJ 3635 并查集- 路径压缩,带秩合并
思路来源:http://blog.csdn.net/niushuai666/article/details/6990421 题目大意: 初始时,有n个龙珠,编号从1到n,分别对应的放在编号从1到n的城 ...
- 关于并查集的路径压缩(Path Compress)优化
之前在CSDN看到一篇很受欢迎的讲解并查集的博文,其中自然用到了路径压缩: int pre[1000]; int find(int x){ int root = x; while(pre[root]! ...
- Never Wait for Weights(带权并查集+路径压缩)
题目链接:http://acm.sdibt.edu.cn/vjudge/contest/view.action?cid=2209#problem/F !a b w 表示b比a大w ? a b 输出 ...
随机推荐
- 一步步实现自己的ORM(四)
通过前3章文章,大致对ORM有一定的了解,但也存在效率低下(大量用了反射)和重复代码,今天我们要对ORM进行优化. 具体流程如下: 我们优化的第一个就是减少反射调用,我的思路是定义一个Mapping, ...
- 前端经典面试题 不经典不要star!
前言 (以下内容为一个朋友所述)今天我想跟大家分享几个前端经典的面试题,为什么我突然想写这么一篇文章呢?今天我应公司要求去面试了下几位招聘者,然后又现场整不出几个难题,就搜了一下前端变态面试题! HA ...
- 非常实用的Linux 系统监控工具
随着互联网行业的不断发展,各种监控工具多得不可胜数.这里列出网上最全的监控工具.让你可以拥有超过80种方式来管理你的机器.在本文中,我们主要包括以下方面: 命令行工具 网络相关内容 系统相关的监控工具 ...
- asp.net 页面嵌套(非iframe)方法
前台 <div id="divUrlDetail" runat="server"> </div> 后台 protected void P ...
- VM中python2.7运行skier游戏,shell重启问题!!!!!!
在虚拟机win7系统python2.7,在该python中运行了 父与子中的skier游戏(代码手写), 出现如下问题: ================ RESTART: C:\Python27\S ...
- mysql ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2 "No such file or directory")
解决方案如下:
- windows8无脑式双系统安装教程(转)
转:http://blog.csdn.net/poem_qianmo/article/details/7334987 首先去微软官网将ISO文件下载下来,分为32bit跟64bit两个版本,因人而异, ...
- java中的堆与栈
Java 中的堆和栈 Java把内存划分成两种:一种是栈内存,一种是堆内存. 在函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配 . 当在一段代码块定义一个变量时,Java就在栈中 ...
- Javascript根据指定下标或对象删除数组元素
删除数组元素在工作中经常会用到,本文讲解一下Javascript根据下标删除数组元素的方法,需要了解的朋友可以参考下 将一下代码放在全局js文件中: Js代码 /** *删除数组指定下标或指定对象 * ...
- C基础:关于预处理宏定义命令
为了程序的通用性,可以使用#define预处理宏定义命令,它的具体作用,就是方便程序段的定义和修改. 1.关于预定义替代 #define Conn(x,y) x##y#define ToChar(x) ...