[BZOJ3585][BZOJ3339]mex

试题描述

有一个长度为n的数组{a1,a2,...,an}。m次询问,每次询问一个区间内最小没有出现过的自然数。

输入

第一行n,m。
第二行为n个数。
从第三行开始,每行一个询问l,r。

输出

一行一个数,表示每个询问的答案。

输入示例


输出示例


数据规模及约定

对于100%的数据:
1<=n,m<=200000
0<=ai<=109
1<=l<=r<=n

题解

首先离线,将询问按右端点排序。然后我们就可以从左到右一个个添加序列中的数了。现在我们可以认为右端点固定为 R 了,考虑一个数 i,我们只关心左边离它最近的位置,不妨称为 lstp[i],那么 mex{ A[L..R] } = k 等价于 min{ lstp[0..k-1] } ≥ L,即小于 k 的数上一次出现的位置在 L 及之后,即 [L, R] 中包含了所有 0 到 k-1 中的数字。这样,我们维护一个权值线段树,支持点修改,在查询时可以直接在线段树上二分。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 200010
#define maxnode 6000010
#define maxv 1000000000 int n, q, A[maxn], num[maxn]; struct Que {
int l, r, id;
Que() {}
Que(int _1, int _2, int _3): l(_1), r(_2), id(_3) {}
bool operator < (const Que& t) const { return r < t.r; }
} qs[maxn]; int ToT, mnv[maxnode], lc[maxnode], rc[maxnode], rt;
void update(int& o, int l, int r, int val, int npos) {
if(!o) o = ++ToT;
if(l == r) mnv[o] = npos;
else {
int mid = l + r >> 1;
if(val <= mid) update(lc[o], l, mid, val, npos);
else update(rc[o], mid + 1, r, val, npos);
mnv[o] = min(mnv[lc[o]], mnv[rc[o]]);
}
return ;
}
int query(int lim) {
int l = 0, r = maxv, o = rt;
while(l < r) {
if(!o) return l;
int mid = l + r >> 1;
if((lc[o] ? mnv[lc[o]] : 0) >= lim) l = mid + 1, o = rc[o];
else r = mid, o = lc[o];
}
return l;
} int Ans[maxn]; int main() {
n = read(); q = read();
for(int i = 1; i <= n; i++) A[i] = read();
for(int i = 1; i <= q; i++) {
int l = read(), r = read();
qs[i] = Que(l, r, i);
} sort(num + 1, num + n + 1);
sort(qs + 1, qs + q + 1);
for(int i = 1, j = 1; i <= q; i++) {
while(j <= qs[i].r) update(rt, 0, maxv, A[j], j), j++;
Ans[qs[i].id] = query(qs[i].l);
} for(int i = 1; i <= q; i++) printf("%d\n", Ans[i]); return 0;
}

[BZOJ3585][BZOJ3339]mex的更多相关文章

  1. 【bzoj3585/bzoj3339】mex/Rmq Problem 莫队算法+分块

    原文地址:http://www.cnblogs.com/GXZlegend/p/6805283.html 题目描述 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没 ...

  2. 【BZOJ3585】mex

    Description 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行開始,每行一个询问l, ...

  3. 【bzoj3585】mex 线段树 mex,sg

    Description 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...

  4. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  5. [bzoj3339]Rmq Problem||[bzoj3585]mex_线段树

    Rmq Problem bzoj-3339||mex bzoj-3585 题目大意:给定一个长度为n的数列a,多次讯问区间l,r中最小的不属于集合{$A_l,A_{l+1}...A_r$}的非负整数. ...

  6. 分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex

    题面:P4137 Rmq Problem / mex 题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案. 除了bzoj3339以外,另外两道题Ai范围都是1e9. ...

  7. Rmq Problem/mex BZOJ3339 BZOJ3585

    分析: 一开始没看懂题... 后来想用二分答案却不会验证... 之后,想到用主席树来维护... 建一个权值线段树,维护出这个权值以前所有的点最晚在哪里出现... 之后,查一下是不是比查询区间的l断点大 ...

  8. BZOJ3339:Rmq Problem & BZOJ3585 & 洛谷4137:mex——题解

    前者:https://www.lydsy.com/JudgeOnline/problem.php?id=3339 后者: https://www.lydsy.com/JudgeOnline/probl ...

  9. BZOJ3339&&3585 Rmq Problem&&mex

    BZOJ3339&&3585:Rmq Problem&&mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最 ...

随机推荐

  1. Mongodb之failed to create service entry worker thread

    Mongodb "failed to create service entry worker thread" 错误. 系统:CentOS release 6.8 mongod.lo ...

  2. [学习笔记] Markdown语法备忘

    Markdown语法总结 标题 # 这是一级标题 ## 这是二级标题 ### 这是三级标题 #### 这是四级标题 ##### 这是五级标题 ###### 这是六级标题 注意#后面要加空格 字体 ** ...

  3. 2018.4.11 Java为何用xml做配置文件? 理由如下

    在Java世界里xml配置文件几乎是首选,xml有什么好的特性呢? 第一:xml能存储小量数据,仅仅是存储数据. 第二:xml可以跨平台,主流各种平台都对xml有支持, 真正的跨平台, 第三:xml读 ...

  4. xml文件读取

    xml文件如下: <annotation> <folder>bnrc</folder> <filename>jena_000000_000019_lef ...

  5. Url Rewrite 重写

    前几天看到园子里一篇关于 Url 重写的文章<获取ISAPI_Rewrite重写后的URL>, URL-Rewrite 这项技术早已不是一项新技术了,这个话题也已经被很多人讨论过多次.搜索 ...

  6. 使用filter函数筛选出素数

    function getPrimeNumber(arr) { return arr.filter(function (number) { if (typeof number !== 'number' ...

  7. python列表之append与extend方法比较

    append和extend是列表的两种添加元素方式,但这两种方式却又有些不同之处.那么不同之处在哪里呢,我们通过对二者的定义和实例来看一看. list.append() 1.定义:L.append(o ...

  8. Struts2和SpringMVC简单配置以及区别总结

    Struts2: struts 2 是一个基于MVC(mode-view-con)设计模式的Web应用框架,是由Struts1和WebWork两个经典框架发展而来的. 工作流程: 1客户端浏览器发出H ...

  9. 帮助解决NoSuchMethodError

    排查出具体的类,然后将冲突的类删除掉即可 Method[] methods = Base64.class.getMethods(); // 输出实际jar包路径 System.out.println( ...

  10. Aizu - 1386 Starting a Scenic Railroad Service (思维乱搞)

    给你n个区间,求: 1:最多有多少区间与同一个区间相交. 2:相交部分的最大区间数目. Sample Input 1 4 1 3 1 3 3 6 3 6 Sample Output 1 2 2 Sam ...