Mayor's posters

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题目大意:
大体是说有人要竞选需要投票什么的,不用理会,总之后面就是贴海报, 后面的能把前面的海报覆盖,海报每次贴不会到方格中间,
如果一个海报不是完全被贴上就算可以看到,问最后你能看到几张海报(英语渣,反正我是这么理解的) 输入
1 //T个样例
5 //下面5(n)张海报及其范围 1 <= n <= 10000
1 4 //海报的左右边界 1--10000000
2 6
8 10
3 4
7 10 输出
4 能看到4张海报 解题思路:
由于海报粘贴的方式,在外面的绝对不会被里面的遮住,所以倒着来覆盖海报比较方便
主要还是由于海报边界太大需要离散化,如果把海报的每个边界看成一个节点话最多需要的范围就成了20000 节点是80000
不过我不会离散化第一次看了课件,模仿着写的,不过听学长说貌似不算很好的离散化 或者完全不合格的离散化
我用的这种离散化还是要开一个100000000的一维数组 虽然开的下,这道题也能解决,不过学长说如果范围是几亿的话就没办法了
不过这道题还是能过的,新的离散化方法明天再搞吧 下面是代码
/*毕竟我是王宇浩*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cstdlib>
#include <cmath>
#include <cctype>
#define Max(a,b) ((a)>(b)?(a):(b))
#define ls rt<<1
#define rs rt<<1|1
using namespace std;
const int N = ;
int xx[N];//x[i]用来储存海报左右边,排列后节点的位置为i;
int post[N * ];//post[i]用来储存边i应该排列在第几个位置上面
struct Poster
{
int l, r;
}P[N];//P[i]来储存第i张海报的左右边 struct node
{
int l, r;
bool cover;
int Mid()
{
return (l + r) >> ;
} }a[N<<]; int cmp(const void *a, const void *b)
{
int *c, *d;
c = (int *)a;
d = (int *)b;
return *c - *d;
} void Build(int rt, int l, int r)
{
a[rt].l = l, a[rt].r = r, a[rt].cover = false; if(l == r) return ; Build(ls, l, a[rt].Mid());
Build(rs, a[rt].Mid()+, r);
}
void UP(int rt)
{
//如果ls和rs都被覆盖, 则此区域被覆盖
if(a[rt].l == a[rt].r) return;
if(a[ls].cover && a[rs].cover)
a[rt].cover = true;
}
bool Search(int rt, int l, int r)//如果找到此区间未被覆盖,覆盖并返回true, 否则返回false;
{
bool ans;
if(a[rt].cover) return false;
if(a[rt].l == l && a[rt].r == r) {
if(a[rt].cover) return false;
else {
a[rt].cover = true;
return true;
}
}
if(l > a[rt].Mid()) {
ans = Search(rs, l, r);
}
else if(r <= a[rt].Mid()) {
ans = Search(ls, l, r);
}
else {
bool ans1 = Search(ls, l, a[rt].Mid());
bool ans2 = Search(rs, a[rt].Mid() + , r);
ans = ans1 || ans2;
}
UP(rt);//每次放置海报之后就要向上更新
return ans;
} int main()
{
int T, n;
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
int index = ;
for(int i = ; i < n; i++) {
scanf("%d %d", &P[i].l, &P[i].r);
xx[index++] = P[i].l;
xx[index++] = P[i].r;
}
qsort(xx, index, sizeof(xx[]), cmp);//对每个左右边的大小排序,确定其属于的节点位置
int index2 = ;
for(int i = ; i < index; i++) {//每个边的位置确定一下,相同值为一个节点,相邻节点也相邻,不相邻节点之间空一个节点
post[xx[i]] = index2;
if(i == index - ) break;//判断到最后一个,结束循环,因为每次循环保存的都是下个节点的状态,及时结束防止数组越界
if(xx[i + ] - xx[i] == ) index2++;
if(xx[i + ] - xx[i] > ) index2 += ;
}
Build(, , index2);//建立线段树
int ans = ;//保存答案
for(int i = n - ; i >= ; i--) {
if(Search(, post[P[i].l], post[P[i].r])) ans++;//每次贴一张海报,判断会不会被覆盖,不会则答案+1
}
printf("%d\n", ans);
}
}
/*
1
5
1 4
2 6
8 10
3 4
7 10 */

POJ 2528 Mayor's posters的更多相关文章

  1. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  2. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  3. POJ - 2528 Mayor's posters(dfs+分治)

    POJ - 2528 Mayor's posters 思路:分治思想. 代码: #include<iostream> #include<cstdio> #include< ...

  4. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  5. POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】

    任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 59239   Accepted: 17157 ...

  7. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  8. POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】

    Mayor's posters Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  9. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

随机推荐

  1. cordova 打包发布正式版 apk

    cordova build android —release 笔者观察了一下新版Cordova,用的是gradle来build项目,所以网上的那些设置ant.properties的解决方法都排除掉,不 ...

  2. 在Ubuntu14.04安装torch7笔记

    http://www.linuxdiyf.com/linux/18979.html 附编译例子: https://github.com/vic-w/torch-practice

  3. python json操作

    来源 http://www.cnblogs.com/qq78292959/p/3467937.html 什么是json: JSON(JavaScript Object Notation) 是一种轻量级 ...

  4. Linux and the Device Tree

    来之\kernel\Documentation\devicetree\usage-model.txt Linux and the Device Tree ----------------------- ...

  5. linux安装配置apk打包程序gradle+jdk+Android_sdk+python自动化编译脚本

    安装gradle: 1.下载gradle包 去这里下载需要的tar.gz包:https://services.gradle.org/distributions/ 2.解压 tar zxvf gradl ...

  6. Linux-设置固定IP

    第一步:激活网卡 系统装好后默认的网卡是eth0,用下面的命令将这块网卡激活. # ifconfig eth0 up 第二步:设置网卡进入系统时启动 想要每次开机就可以自动获取IP地址上网,就要设置网 ...

  7. 生成yyMMddHHmmssSS时间戳代码作为唯一主键值

    import java.sql.Time; import java.text.DateFormat; import java.text.ParseException; import java.text ...

  8. (转载)Linux如何编译安装源码包软件

    一.什么是源码包软件: 顾名思义,源码包就是源代码的可见的软件包,基于Linux和BSD系统的软件最常见:在国内源可见的软件几乎绝迹:大多开源软件都是国外出品:在国内较为出名的开源软件有fcitx;l ...

  9. Nginx模块之———— RTMP 模块的在线统计功能 stat 数据流数据的获取(不同节点则获取的方式不同)

    一.目前只有一个Live节点存在 单节点获取方式如下: public function getStreamByIp($outerIP, $streamName) { //查询录像模块的IP地址外网,根 ...

  10. 程序设计入门——C语言 第6周编程练习 1 分解质因数(5分)

    1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. ...